An analysis of convexity and starlikeness attributes for Breaz integro-differential operator
Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 2, pp. 25-34 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Geometric Theory of Analytic Functions (GTAF) is the attractive part of complex analysis, which correlates with the rest of the themes in mathematics. Its essential purpose is to formulate numerous classes of geometric analytic functions and to discuss their geometric attributes. In continuation, the association between operator theory and the GTAF area started to take shape and has remained a topic of wide attention today. In the previous century, operator theory was extended to the complex open unit disk and has been applied to propose diverse sorts of generalizations of normalized analytic functions. As a result, the operator theory appears to be a good way to look for things in the GTAF area. Since then, the acquisition of geometric attributes by employing operators has become a significant theme of research studies. The current study centers on and investigates, in the classes of $\ell$-uniformly convex and starlike functions of order $\beta$, the convexity attribute by utilizing a modified Breaz integro-differential operator in the unit disk. Furthermore, in the class of analytic functions, some conditions that make the Breaz operator look like a star are looked into.
@article{VMJ_2022_24_2_a2,
     author = {H. F. Al-Janaby and F. Ghanim},
     title = {An analysis of convexity and starlikeness attributes for {Breaz} integro-differential operator},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {25--34},
     year = {2022},
     volume = {24},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2022_24_2_a2/}
}
TY  - JOUR
AU  - H. F. Al-Janaby
AU  - F. Ghanim
TI  - An analysis of convexity and starlikeness attributes for Breaz integro-differential operator
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2022
SP  - 25
EP  - 34
VL  - 24
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMJ_2022_24_2_a2/
LA  - en
ID  - VMJ_2022_24_2_a2
ER  - 
%0 Journal Article
%A H. F. Al-Janaby
%A F. Ghanim
%T An analysis of convexity and starlikeness attributes for Breaz integro-differential operator
%J Vladikavkazskij matematičeskij žurnal
%D 2022
%P 25-34
%V 24
%N 2
%U http://geodesic.mathdoc.fr/item/VMJ_2022_24_2_a2/
%G en
%F VMJ_2022_24_2_a2
H. F. Al-Janaby; F. Ghanim. An analysis of convexity and starlikeness attributes for Breaz integro-differential operator. Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 2, pp. 25-34. http://geodesic.mathdoc.fr/item/VMJ_2022_24_2_a2/

[1] de Branges L., “A Proof of the Bieberbach Conjecture”, Acta Mathematica, 154:1–2 (1984), 137–152 | DOI | MR

[2] Ghanim F., Al-Janaby H. F., “Inclusion and Convolution Features of Univalent Meromorphic Functions Correlating with Mittag–Leffler Function”, Filomat, 34:7 (2020), 2141–2150 | DOI | MR | Zbl

[3] Ghanim F., Bendak S., Hawarneh A. A., “Certain Implementations in Fractional Calculus Operator Involving Mittag–Leffler Confluent Hypergeometric Functions”, Proceedings of the Royal Society A, 478:2258 (2022) | DOI | MR

[4] Oros G. I., “Applications of Inequalities in the Complex Plane Associated with Confluent Hypergeometric Function”, Symmetry, 13:2 (2021), 259, 10 pp. | DOI

[5] Ghanim F., Al-Janaby H. F., Bazighifan O., “Geometric Properties of the Meromorphic Functions Class Through Special Functions Associated with a Linear Operator”, Advances in Continuous and Discrete Models, 17 (2022), 1–15 | DOI | MR

[6] Lupas A. A., Oros G. I., “Fractional Calculus and Confluent Hypergeometric Function Applied in the Study of Subclasses of Analytic Functions”, Mathematics, 10:5 (2022), 705, 9 pp. | DOI

[7] Atangana A., Baleanu D., “New Fractional Derivatives with Nonlocal and non-Singular Kernel: Theory and Application to Heat Transfer Model”, Thermal Science, 20:2 (2016), 763–769 | DOI

[8] Srivastava H. M., Fernandez A., Baleanuand D., “Some New Fractional-Calculus Connections Between Mittag–Leffler Functions”, Mathematics, 7:6 (2019), 485, 10 pp. | DOI

[9] Özarslan M. A., Ustaoǧlu C., “Some Incomplete Hypergeometric Functions and Incomplete Riemann–Liouville Fractional Integral Operators”, Mathematics, 7:5 (2019), 483, 18 pp. | DOI

[10] Ghanim F., Al-Janaby H. F., “An Analytical Study on Mittag–Leffler-Confluent Hypergeometric Functions with Fractional Integral Operator”, Mathematical Methods in the Applied Sciences, 44:5 (2020), 3605–3614 | DOI | MR

[11] Ghanim F., Al-Janaby H. F., “Some Analytical Merits of Kummer-Type Function Associated with Mittag–Leffler Parameters”, Arab Journal of Basic and Applied Sciences, 28:1 (2021), 255–263 | DOI

[12] Ghanim F., Al-Janaby H. F., Bazighifan O., “Fractional Calculus Connections on Mittag–Leffler Confluent Hypergeometric Functions”, Fractal and Fractional, 5:4 (2021), 143, 10 pp. | DOI | MR

[13] Goodman A. W., Univalent Functions, Mariner Publishing Company, Florida, 1983 | MR

[14] Study E., Vorlesungen über Ausgewählte Gegenstä der Geometrie, Konforme Abbildung Einfach Zusammenhängender Bereiche, v. 2, B. G. Teubner, Leipzig, 1913

[15] Alexander J. W., “Functions which Map the Interior of the Unit Circle upon Simple Regions”, The Annals of Mathematics, 17(2):1 (1915), 12–22 | DOI | MR | Zbl

[16] Nevanlinna R., “Über die Konforme Abbildund Sterngebieten”, Oversikt av Finska-Vetenskaps Societen Forhandlingar, 63(A):6 (1921), 48–403

[17] Robertson M. S., “Certain Classes of Starlike Functions”, Michigan Mathematical Journal, 76:1 (1954), 755–758 | MR

[18] Shiraishi H., Owa S., “Starlikeness and Convexity for Analytic Functions Concerned with Jack's Lemma”, International Journal of Open Problems in Computer Science and Mathematics, 2:1 (2009), 37–47, arXiv: 1303.0501 | MR

[19] Nunokawa M., Goyal S. P., Kumar R., “Sufficient Conditions for Starlikeness”, Journal of Classical Analysis, 1 (2012), 85–90 | DOI | MR | Zbl

[20] Sokól J., Nunokawa M., “On Some Sufficient Conditions for Univalence and Starlikeness”, Journal of Inequalities and Applications, 2012 (2012), 282, 9 pp. | DOI | MR | Zbl

[21] Nunokawa M., Sokól J., “On Some Conditions for Schlichtness of Analytic Functions”, Journal of Computational and Applied Mathematics, 363 (2020), 241–248 | DOI | MR | Zbl

[22] Goodman A. W., “On Uniformly Convex Functions”, Annales Polonici Mathematici, 56:1 (1991), 87–92 | DOI | MR | Zbl

[23] Goodman A. W., “On Uniformly Starlike Functions”, Journal of Mathematical Analysis and Applications, 155:2 (1991), 364–370 | DOI | MR | Zbl

[24] Rønning F., “On Starlike Functions Associated with Parabolic Regions”, Annales Universitatis Mariae Curie-Sklodowska. Sectio A. Mathematica, 45:14 (1991), 117–122 | MR

[25] Ma W. C., Minda D., “Uniformly Convex Functions”, Annales Polonici Mathematici, 57:2 (1992), 165–175 http://eudml.org/doc/262507 | DOI | MR | Zbl

[26] Rønning F., “Uniformly Convex Functions and a Corresponding Class of Starlike Functions”, Proceedings of the American Mathematical Society, 118:1 (1993), 189–196 | DOI | MR

[27] Bharati R., Parvatham R., Swaminathan A., “On Subclasses of Uniformly Convex Functions and Corresponding Class of Starlike Functions”, Tamkang Journal of Mathematics, 28:1 (1997), 17–32 | DOI | MR | Zbl

[28] Darus M., “Certain Class of Uniformly Analytic Functions”, Acta Mathematica Academiae Paedagogicae Nyiregyhaziensis, 24:3 (2008), 345–353 | MR | Zbl

[29] Breaz N., Breaz D., Darus M., “Convexity Properties for Some General Integral Operators on Uniformly Analytic Functions Classes”, Computers $\$ Mathematics with Applications, 60:12 (2010), 3105–3107 | DOI | MR | Zbl

[30] Sokól J., Trojnar-Spelina L., “On a Sufficient Condition for Strongly Starlikeness”, Journal of Inequalities and Applications, 2013 (2013), 283, 11 pp. | DOI | MR

[31] Magesh N., “Certain Subclasses of Uniformly Convex Functions of Order $\alpha$ and Type $\beta$ with Varying Arguments”, Journal of the Egyptian Mathematical Society, 21:3 (2013), 184–189 | DOI | MR | Zbl

[32] Al-Janaby H. F., Ghanim F., Darus M., “Some Geometric Properties of Integral Operators Proposed by Hurwitz–Lerch Zeta Function”, IOP Conf. Series: Journal of Physics: Conference Series, 1212 (2019), 1–6 | DOI

[33] Libera R. J., “Some Classes of Regular Univalent Functions”, Proceedings of the American Mathematical Society, 16 (1965), 755–758 | DOI | MR | Zbl

[34] Bernardi S. D., “Convex and Starlike Univalent Functions”, Transactions of the American Mathematical Society, 135 (1969), 429–446 | DOI | MR | Zbl

[35] Miller S. S., Mocanu P. T., Reade M. O., “Starlike Integral Operators”, Pacific Journal of Mathematics, 79 (1978), 157–168 | DOI | MR

[36] Ruscheweyh S., “New Criteria for Univalent Functions”, Proceedings of the American Mathematical Society, 49 (1975), 109–115 | DOI | MR | Zbl

[37] Sãlãgean G. S., “Subclasses of Univalent Functions”, Lecture Notes in Mathematics, 1013, 1983, 362–372 | DOI | MR | Zbl

[38] Carlson B. C., Shaffer D. B., “Starlike and Prestarlike Hypergeometric Functions”, SIAM Journal on Mathematical Analysis, 15 (1984), 737–745 | DOI | MR | Zbl

[39] Srivastava H. M., Attiya A. A., “An Integral Operator Associated with the Hurwitz–Lerch Zeta Function and Differential Subordination”, Integral Transforms and Special Functions, 18:3 (2007), 207–216 | DOI | MR | Zbl

[40] Ghanim F., Al-Shaqsi K., Darus M., Al-Janaby H. F., “Subordination Properties of Meromorphic Kummer Function Correlated with Hurwitz–Lerch Zeta-Function”, Mathematics, 9:192 (2021), 1–10 | DOI

[41] Pascu N. N., Pescar V., “On the Integral Operators of Kim-Merkes and Pfaltzgraff”, Mathematica, Universitatis Babes-Bolyai Cluj-Napoca, 32(55):2 (1990), 185–192 | MR | Zbl

[42] Breaz D., Breaz N., Two Integral Operators, 47:3 (2002), 13–19 | MR | Zbl

[43] Breaz D., Owa S., Breaz N., “A New Integral Univalent Operator”, Acta Universitatis Apulensis, 16 (2008), 11–16 | MR | Zbl

[44] Frasin B. A., “Univalence Criteria for General Integral Operator”, Math. Commun., 16:1 (2011), 115–124 | MR | Zbl

[45] Deniz E., “Univalence Criteria for a General Integral Operator”, Filomat, 28:1 (2014), 11–19 | DOI | MR | Zbl

[46] Bãrbatu C., Breaz D., “Univalence Criteria for a General Integral Operator”, General Math., 27:2 (2019), 43–57 | DOI | MR