@article{VMJ_2022_24_2_a2,
author = {H. F. Al-Janaby and F. Ghanim},
title = {An analysis of convexity and starlikeness attributes for {Breaz} integro-differential operator},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {25--34},
year = {2022},
volume = {24},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2022_24_2_a2/}
}
TY - JOUR AU - H. F. Al-Janaby AU - F. Ghanim TI - An analysis of convexity and starlikeness attributes for Breaz integro-differential operator JO - Vladikavkazskij matematičeskij žurnal PY - 2022 SP - 25 EP - 34 VL - 24 IS - 2 UR - http://geodesic.mathdoc.fr/item/VMJ_2022_24_2_a2/ LA - en ID - VMJ_2022_24_2_a2 ER -
H. F. Al-Janaby; F. Ghanim. An analysis of convexity and starlikeness attributes for Breaz integro-differential operator. Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 2, pp. 25-34. http://geodesic.mathdoc.fr/item/VMJ_2022_24_2_a2/
[1] de Branges L., “A Proof of the Bieberbach Conjecture”, Acta Mathematica, 154:1–2 (1984), 137–152 | DOI | MR
[2] Ghanim F., Al-Janaby H. F., “Inclusion and Convolution Features of Univalent Meromorphic Functions Correlating with Mittag–Leffler Function”, Filomat, 34:7 (2020), 2141–2150 | DOI | MR | Zbl
[3] Ghanim F., Bendak S., Hawarneh A. A., “Certain Implementations in Fractional Calculus Operator Involving Mittag–Leffler Confluent Hypergeometric Functions”, Proceedings of the Royal Society A, 478:2258 (2022) | DOI | MR
[4] Oros G. I., “Applications of Inequalities in the Complex Plane Associated with Confluent Hypergeometric Function”, Symmetry, 13:2 (2021), 259, 10 pp. | DOI
[5] Ghanim F., Al-Janaby H. F., Bazighifan O., “Geometric Properties of the Meromorphic Functions Class Through Special Functions Associated with a Linear Operator”, Advances in Continuous and Discrete Models, 17 (2022), 1–15 | DOI | MR
[6] Lupas A. A., Oros G. I., “Fractional Calculus and Confluent Hypergeometric Function Applied in the Study of Subclasses of Analytic Functions”, Mathematics, 10:5 (2022), 705, 9 pp. | DOI
[7] Atangana A., Baleanu D., “New Fractional Derivatives with Nonlocal and non-Singular Kernel: Theory and Application to Heat Transfer Model”, Thermal Science, 20:2 (2016), 763–769 | DOI
[8] Srivastava H. M., Fernandez A., Baleanuand D., “Some New Fractional-Calculus Connections Between Mittag–Leffler Functions”, Mathematics, 7:6 (2019), 485, 10 pp. | DOI
[9] Özarslan M. A., Ustaoǧlu C., “Some Incomplete Hypergeometric Functions and Incomplete Riemann–Liouville Fractional Integral Operators”, Mathematics, 7:5 (2019), 483, 18 pp. | DOI
[10] Ghanim F., Al-Janaby H. F., “An Analytical Study on Mittag–Leffler-Confluent Hypergeometric Functions with Fractional Integral Operator”, Mathematical Methods in the Applied Sciences, 44:5 (2020), 3605–3614 | DOI | MR
[11] Ghanim F., Al-Janaby H. F., “Some Analytical Merits of Kummer-Type Function Associated with Mittag–Leffler Parameters”, Arab Journal of Basic and Applied Sciences, 28:1 (2021), 255–263 | DOI
[12] Ghanim F., Al-Janaby H. F., Bazighifan O., “Fractional Calculus Connections on Mittag–Leffler Confluent Hypergeometric Functions”, Fractal and Fractional, 5:4 (2021), 143, 10 pp. | DOI | MR
[13] Goodman A. W., Univalent Functions, Mariner Publishing Company, Florida, 1983 | MR
[14] Study E., Vorlesungen über Ausgewählte Gegenstä der Geometrie, Konforme Abbildung Einfach Zusammenhängender Bereiche, v. 2, B. G. Teubner, Leipzig, 1913
[15] Alexander J. W., “Functions which Map the Interior of the Unit Circle upon Simple Regions”, The Annals of Mathematics, 17(2):1 (1915), 12–22 | DOI | MR | Zbl
[16] Nevanlinna R., “Über die Konforme Abbildund Sterngebieten”, Oversikt av Finska-Vetenskaps Societen Forhandlingar, 63(A):6 (1921), 48–403
[17] Robertson M. S., “Certain Classes of Starlike Functions”, Michigan Mathematical Journal, 76:1 (1954), 755–758 | MR
[18] Shiraishi H., Owa S., “Starlikeness and Convexity for Analytic Functions Concerned with Jack's Lemma”, International Journal of Open Problems in Computer Science and Mathematics, 2:1 (2009), 37–47, arXiv: 1303.0501 | MR
[19] Nunokawa M., Goyal S. P., Kumar R., “Sufficient Conditions for Starlikeness”, Journal of Classical Analysis, 1 (2012), 85–90 | DOI | MR | Zbl
[20] Sokól J., Nunokawa M., “On Some Sufficient Conditions for Univalence and Starlikeness”, Journal of Inequalities and Applications, 2012 (2012), 282, 9 pp. | DOI | MR | Zbl
[21] Nunokawa M., Sokól J., “On Some Conditions for Schlichtness of Analytic Functions”, Journal of Computational and Applied Mathematics, 363 (2020), 241–248 | DOI | MR | Zbl
[22] Goodman A. W., “On Uniformly Convex Functions”, Annales Polonici Mathematici, 56:1 (1991), 87–92 | DOI | MR | Zbl
[23] Goodman A. W., “On Uniformly Starlike Functions”, Journal of Mathematical Analysis and Applications, 155:2 (1991), 364–370 | DOI | MR | Zbl
[24] Rønning F., “On Starlike Functions Associated with Parabolic Regions”, Annales Universitatis Mariae Curie-Sklodowska. Sectio A. Mathematica, 45:14 (1991), 117–122 | MR
[25] Ma W. C., Minda D., “Uniformly Convex Functions”, Annales Polonici Mathematici, 57:2 (1992), 165–175 http://eudml.org/doc/262507 | DOI | MR | Zbl
[26] Rønning F., “Uniformly Convex Functions and a Corresponding Class of Starlike Functions”, Proceedings of the American Mathematical Society, 118:1 (1993), 189–196 | DOI | MR
[27] Bharati R., Parvatham R., Swaminathan A., “On Subclasses of Uniformly Convex Functions and Corresponding Class of Starlike Functions”, Tamkang Journal of Mathematics, 28:1 (1997), 17–32 | DOI | MR | Zbl
[28] Darus M., “Certain Class of Uniformly Analytic Functions”, Acta Mathematica Academiae Paedagogicae Nyiregyhaziensis, 24:3 (2008), 345–353 | MR | Zbl
[29] Breaz N., Breaz D., Darus M., “Convexity Properties for Some General Integral Operators on Uniformly Analytic Functions Classes”, Computers $\$ Mathematics with Applications, 60:12 (2010), 3105–3107 | DOI | MR | Zbl
[30] Sokól J., Trojnar-Spelina L., “On a Sufficient Condition for Strongly Starlikeness”, Journal of Inequalities and Applications, 2013 (2013), 283, 11 pp. | DOI | MR
[31] Magesh N., “Certain Subclasses of Uniformly Convex Functions of Order $\alpha$ and Type $\beta$ with Varying Arguments”, Journal of the Egyptian Mathematical Society, 21:3 (2013), 184–189 | DOI | MR | Zbl
[32] Al-Janaby H. F., Ghanim F., Darus M., “Some Geometric Properties of Integral Operators Proposed by Hurwitz–Lerch Zeta Function”, IOP Conf. Series: Journal of Physics: Conference Series, 1212 (2019), 1–6 | DOI
[33] Libera R. J., “Some Classes of Regular Univalent Functions”, Proceedings of the American Mathematical Society, 16 (1965), 755–758 | DOI | MR | Zbl
[34] Bernardi S. D., “Convex and Starlike Univalent Functions”, Transactions of the American Mathematical Society, 135 (1969), 429–446 | DOI | MR | Zbl
[35] Miller S. S., Mocanu P. T., Reade M. O., “Starlike Integral Operators”, Pacific Journal of Mathematics, 79 (1978), 157–168 | DOI | MR
[36] Ruscheweyh S., “New Criteria for Univalent Functions”, Proceedings of the American Mathematical Society, 49 (1975), 109–115 | DOI | MR | Zbl
[37] Sãlãgean G. S., “Subclasses of Univalent Functions”, Lecture Notes in Mathematics, 1013, 1983, 362–372 | DOI | MR | Zbl
[38] Carlson B. C., Shaffer D. B., “Starlike and Prestarlike Hypergeometric Functions”, SIAM Journal on Mathematical Analysis, 15 (1984), 737–745 | DOI | MR | Zbl
[39] Srivastava H. M., Attiya A. A., “An Integral Operator Associated with the Hurwitz–Lerch Zeta Function and Differential Subordination”, Integral Transforms and Special Functions, 18:3 (2007), 207–216 | DOI | MR | Zbl
[40] Ghanim F., Al-Shaqsi K., Darus M., Al-Janaby H. F., “Subordination Properties of Meromorphic Kummer Function Correlated with Hurwitz–Lerch Zeta-Function”, Mathematics, 9:192 (2021), 1–10 | DOI
[41] Pascu N. N., Pescar V., “On the Integral Operators of Kim-Merkes and Pfaltzgraff”, Mathematica, Universitatis Babes-Bolyai Cluj-Napoca, 32(55):2 (1990), 185–192 | MR | Zbl
[42] Breaz D., Breaz N., Two Integral Operators, 47:3 (2002), 13–19 | MR | Zbl
[43] Breaz D., Owa S., Breaz N., “A New Integral Univalent Operator”, Acta Universitatis Apulensis, 16 (2008), 11–16 | MR | Zbl
[44] Frasin B. A., “Univalence Criteria for General Integral Operator”, Math. Commun., 16:1 (2011), 115–124 | MR | Zbl
[45] Deniz E., “Univalence Criteria for a General Integral Operator”, Filomat, 28:1 (2014), 11–19 | DOI | MR | Zbl
[46] Bãrbatu C., Breaz D., “Univalence Criteria for a General Integral Operator”, General Math., 27:2 (2019), 43–57 | DOI | MR