@article{VMJ_2022_24_2_a11,
author = {T. K. Yuldashev},
title = {On a nonlocal boundary value problem for a partial integro-differential equations with degenerate kernel},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {130--141},
year = {2022},
volume = {24},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2022_24_2_a11/}
}
TY - JOUR AU - T. K. Yuldashev TI - On a nonlocal boundary value problem for a partial integro-differential equations with degenerate kernel JO - Vladikavkazskij matematičeskij žurnal PY - 2022 SP - 130 EP - 141 VL - 24 IS - 2 UR - http://geodesic.mathdoc.fr/item/VMJ_2022_24_2_a11/ LA - en ID - VMJ_2022_24_2_a11 ER -
T. K. Yuldashev. On a nonlocal boundary value problem for a partial integro-differential equations with degenerate kernel. Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 2, pp. 130-141. http://geodesic.mathdoc.fr/item/VMJ_2022_24_2_a11/
[1] Costin O., Tanveer S., “Existence and Uniqueness for a Class of Nonlinear Higher-Order Partial Differential Equations in the Complex Plane”, Communications on Pure and Applied Mathematics, 53:9 (2000), 1067–1091 | 3.0.CO;2-Z class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR
[2] Galaktionov V. A., Mitidieri E., Pohozaev S., “Global Sign-Changing Solutions of a Higher Order Semilinear Heat Equation in the Subcritical Fujita Range”, Advanced Nonlinear Studies, 12:3 (2012), 569–596 | DOI | MR | Zbl
[3] Hwang S., “Kinetic Decomposition for Singularly Perturbed Higher Order Partial Differential Equations”, Journal of Differential Equations, 200:2 (2004), 191–205 | DOI | MR | Zbl
[4] Karimov Sh. T., “The Cauchy Problem for the Degenerated Partial Differential Equation of the High Even Order”, Sibir. Electr. Matem. Izvestia, 15 (2018), 853–862 | DOI | MR | Zbl
[5] Littman W., “Decay at Infinity of Solutions to Higher Order Partial Differential Equations: Removal of the Curvature Assumption”, Israel Journal of Math., 8 (1970), 403–407 | DOI | MR | Zbl
[6] Sabitov K. B., “The Dirichlet Problem for Higher-Order Partial Differential Equations”, Mathematical Notes, 97:2 (2015), 255–267 | DOI | MR | Zbl
[7] Yan J., Shu C.-W., “Local Discontinuous Galerkin Methods for Partial Differential Equations with Higher Order Derivatives”, Journal of Scientific Computing, 17 (2002), 27–47 | DOI | MR | Zbl
[8] Yuldashev T. K., Kadirkulov B. J., “Inverse Problem for a Partial Differential Equation with Gerasimov–Caputo-Type Operator and Degeneration”, Fractal Fractions, 5:2 (2021), 58, 13 pp. | DOI
[9] Yuldashev T. K., Shabadikov K. Kh., “Mixed Problem for a Higher-Order Nonlinear Pseudoparabolic Equation”, Journal of Mathematical Sciences, 254:6 (2021), 776–787 | DOI | MR | Zbl
[10] Yuldashev T. K., Shabadikov K. Kh., “Initial-Value Problem for a Higher-Order Quasilinear Partial Differential Equation”, Journal of Mathematical Sciences, 254:6 (2021), 811–822 | DOI | MR | Zbl
[11] Zhao H., Zhu C., Yu Z., “Existence and Convergence of Solutions to a Singularly Perturbed Higher Order Partial Differential Equation”, Nonlinear Anal., 24:10 (1995), 1435–1455 | DOI | MR | Zbl
[12] Benney D. J., Luke J. C., “Interactions of Permanent Waves of Finite Amplitude”, Journal Math. Physics, 43 (1964), 309–313 | DOI | MR | Zbl
[13] Cavalcanti M. M., Domingos Cavalcanti V. N., Ferreira J., “Existence and Uniform Decay for a Nonlinear Viscoelastic Equation with Strong Damping”, Math. Methods in the Applied Sciences, 24 (2001), 1043–1053 | DOI | MR | Zbl
[14] Whitham G. B., Linear and Nonlinear Waves, A Willey-Interscience Publication, New-York–London–Sydney–Toronto, 1974 | MR | Zbl
[15] Gordeziani D. G., Avilishbili G. A., “Solving the Nonlocal Problems for One-Dimensional Medium Oscillation”, Matematicheskoe modelirovanie, 12:1 (2000), 94–103 (in Russian) | MR | Zbl
[16] Abdullaev O. K., “Gellerstedt Type Problem with Integral Gluing Condition for a Mixed Type Equation with Nonlinear Loaded Term”, Lobachevskii Journal of Math., 42:3 (2021), 479–489 | DOI | MR | Zbl
[17] Assanova A. T., “A Two-Point Boundary Value Problem for a Fourth Order Partial Integro-Differential Equation”, Lobachevskii Journal of Math., 42:3 (2021), 526–535 | DOI | MR | Zbl
[18] Assanova A. T., Imanchiyev A. E., Kadirbayeva Zh. M., “A Nonlocal Problem for Loaded Partial Differential Equations of Fourth Order”, Bulletin of the Karaganda University. Mathematics, 97:1 (2020), 6–16 | DOI | MR
[19] Assanova A. T., Sabalakhova A. P., Toleukhanova Z. M., “On the Unique Solvability of a Family of Boundary Value Problems for Integro-Differential Equations of Mixed Type”, Lobachevskii Journal of Math., 42:6 (2021), 1228–1238 | DOI | MR | Zbl
[20] Beshtokov M. Kh., Beshtokova Z. V., Khudalov M. Z., “A Finite Difference Method for Solving a Nonlocal Boundary Value Problem for a Loaded Fractional Order Heat Equation”, Vladikavkaz. Math. J., 22:4 (2020), 45–57 (in Russian) | DOI | MR | Zbl
[21] Dzhamalov S. Z., Ashurov R. R., Ruziev U. S., “On a Seminonlocal Boundary Value Problem for a Multidimensional Loaded Mixed Type Equation of the Second Kind”, Lobachevskii Journal of Math., 42:3 (2021), 536–543 | DOI | MR | Zbl
[22] Heydarzade N. A., “On one Nonlocal Inverse Boundary Problem for the Second-Order Elliptic Equation”, Transections National Acad. Sciences of Azerbaijan. Mathematics, 40:4 (2020), 97–109 | MR
[23] Kabanikhin S. I., Shishlenin M. A., “Recovery of the Time-Dependent Diffusion Coefficient by Known Non-Local Data”, Numerical Anal. Applications, 11:1 (2018), 38–44 | DOI | MR | Zbl
[24] Khalilov Q. S., “A Nonlocal Problem for a Third Order Parabolic-Hyperbolic Equation with a Spectral Parameter”, Lobachevskii Journal of Math., 42:6 (2021), 1274–1285 | DOI | MR | Zbl
[25] Kostin A. B., “The Inverse Problem of Recovering the Source in a Parabolic Equation Under a Condition of Nonlocal Observation”, Sbornik. Mathematics, 204:10 (2013), 1391–1434 | DOI | MR | Zbl
[26] Zaitseva N. V., “Nonlocal Boundary Value Problem with an Integral Condition for a Mixed Type Equation with a Singular Coefficient”, Differential Equations, 57:2 (2021), 210–220 | DOI | MR | Zbl
[27] Yuldashev T. K., “Solvability of a Boundary Value Problem for a Differential Equation of the Boussinesq Type”, Differential Equations, 54:10 (2018), 1384–1393 | DOI | MR | Zbl
[28] Yuldashev T. K., “Determination of the Coefficient in a Nonlocal Problem for an Integro-Differential Equation of Boussinesq Type with a Degenerate Kernel”, Vladikavkaz. Math. J., 21:2 (2019), 67–84 (in Russian) | DOI | MR | Zbl
[29] Yuldashev T. K., “Nonlocal Inverse Problem for a Pseudohyperbolic-Pseudoelliptic Type Integro-Differential Equations”, Axioms, 9:2 (2020), 45, 21 pp. | DOI
[30] Yuldashev T. K., Kadirkulov B. J., “Nonlocal Problem for a Mixed Type Fourth-Order Differential Equation with Hilfer Fractional Operator”, Ural Math. Journal, 6:1 (2020), 153–167 | DOI | MR | Zbl
[31] Yuldashev T. K., “Nonlocal Mixed-Value Problem for a Boussinesq-Type Integro-Differential Equation with Degenerate Kernel”, Ukrainian Math. Journal, 68:8 (2016), 1278–1296 | DOI | MR
[32] Yuldashev T. K., “Mixed Problem for Pseudoparabolic Integro-Differential Equation with Degenerate Kernel”, Differential Equations, 53:1 (2017), 99–108 | DOI | MR | Zbl