A counter-example to the Andreotti–Grauert conjecture
Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 2, pp. 14-24 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In $1962$, Andreotti and Grauert showed that every $q$-complete complex space $X$ is cohomologically $q$-complete, that is for every coherent analytic sheaf ${\mathcal{F}}$ on $X$, the cohomology group $H^{p}(X, {\mathcal{F}})$ vanishes if $p\geq q$. Since then the question whether the reciprocal statements of these theorems are true have been subject to extensive studies, where more specific assumptions have been added. Until now it is not known if these two conditions are equivalent. Using test cohomology classes, it was shown however that if $X$ is a Stein manifold and, if $D\subset X$ is an open subset which has $C^{2}$ boundary such that $H^{p}(D, {\mathcal{O}}_{D})=0$ for all $p\geq q$, then $D$ is $q$-complete. The aim of the present article is to give a counterexample to the conjecture posed in $1962$ by Andreotti and Grauert [ref1] to show that a cohomologically $q$-complete space is not necessarily $q$-complete. More precisely, we show that there exist for each $n\geq 3$ open subsets $\Omega\subset\mathbb{C}^{n}$ such that for every ${\mathcal{F}}\in coh(\Omega)$, the cohomology groups $H^{p}(\Omega, {\mathcal{F}})$ vanish for all $p\geq n-1$ but $\Omega$ is not $(n-1)$-complete.
@article{VMJ_2022_24_2_a1,
     author = {Y. Alaoui},
     title = {A counter-example to the {Andreotti{\textendash}Grauert} conjecture},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {14--24},
     year = {2022},
     volume = {24},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2022_24_2_a1/}
}
TY  - JOUR
AU  - Y. Alaoui
TI  - A counter-example to the Andreotti–Grauert conjecture
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2022
SP  - 14
EP  - 24
VL  - 24
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMJ_2022_24_2_a1/
LA  - en
ID  - VMJ_2022_24_2_a1
ER  - 
%0 Journal Article
%A Y. Alaoui
%T A counter-example to the Andreotti–Grauert conjecture
%J Vladikavkazskij matematičeskij žurnal
%D 2022
%P 14-24
%V 24
%N 2
%U http://geodesic.mathdoc.fr/item/VMJ_2022_24_2_a1/
%G en
%F VMJ_2022_24_2_a1
Y. Alaoui. A counter-example to the Andreotti–Grauert conjecture. Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 2, pp. 14-24. http://geodesic.mathdoc.fr/item/VMJ_2022_24_2_a1/

[1] Andreotti A., Grauert H., “Théorèmes de Finitude Pour la Cohomolgie des Espaces Complexes”, Bulletin de la Société Mathématique de France, 90 (1962), 193–259 | DOI | MR | Zbl

[2] Eastwood M. G., Suria G. V., “Cohomlogically Complete and Pseudoconvex Domains”, Commentarii Mathematici Helvetici, 55 (1980), 413–426 | DOI | MR | Zbl

[3] Diederich H., Fornaess J. E., “Smoothing $q$-Convex Functions and Vanishing Theorems”, Inventiones Mathematicae, 82 (1985), 291–305 | DOI | MR | Zbl

[4] Coltoiu M., Silva A., “Behnke–Stein Theorem on Complex Spaces with Singularities”, Nagoya Mathematical Journal, 137 (1995), 183–194 | DOI | MR | Zbl

[5] Coltoiu M., “On Barth's Conjecture Concerning $H^{n-1}(\mathbb{P}^{n}\setminus A, {\mathcal{F}})$”, Nagoya Mathematical Journal, 145 (1997), 99–123 | DOI | MR | Zbl

[6] Sorani G., “Homologie des $q$-paires de Runge”, Annali della Scuola Normale Superiore di Pisa. Classe di Scienze, S\'{e rie $3$}, 17:4 (1963), 319–332 | MR | Zbl

[7] Peternell M., “Ein Lefschetz–Satz für Schnitte in Projektiv-Algebraischen Mannigfaltigkeiten”, Mathematische Annalen, 264 (1983), 361–388 | DOI | MR | Zbl

[8] Jennane B., “Problème de Levi et Espaces Holomorphiquement Séparés”, Mathematische Annalen, 268 (1984), 305–316 | DOI | MR | Zbl