@article{VMJ_2022_24_2_a0,
author = {M. Ait Hammou},
title = {Existence results for a {Dirichlet} boundary value problem involving the $p(x)${-Laplacian} operator},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {5--13},
year = {2022},
volume = {24},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2022_24_2_a0/}
}
TY - JOUR AU - M. Ait Hammou TI - Existence results for a Dirichlet boundary value problem involving the $p(x)$-Laplacian operator JO - Vladikavkazskij matematičeskij žurnal PY - 2022 SP - 5 EP - 13 VL - 24 IS - 2 UR - http://geodesic.mathdoc.fr/item/VMJ_2022_24_2_a0/ LA - en ID - VMJ_2022_24_2_a0 ER -
M. Ait Hammou. Existence results for a Dirichlet boundary value problem involving the $p(x)$-Laplacian operator. Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 2, pp. 5-13. http://geodesic.mathdoc.fr/item/VMJ_2022_24_2_a0/
[1] Brouwer L. E. J., “Uber Abbildung von Mannigfaltigkeiten”, Mathematische Annalen, 71:1 (1912), 97–115 | DOI | MR | Zbl
[2] Leray J., Schauder J., “Topologie et Équationes Fonctionnelles”, Annales Scientifiques de l'École Normale Supérieure, 51 (1934), 45–78 | DOI | MR
[3] Berkovits J., On the Degree Theory for Nonlinear Mappings of Monotone Type, Annales Academia Scientiarum Fennica. Series A I. Mathematica Dissertationes, 58, 1986, 58 pp. | MR | Zbl
[4] Berkovits J., “Extension of the Leray-Schauder Degree for abstract Hammerstein Type Mappings”, Journal of Differential Equations, 234:1 (2007), 289–310 | DOI | MR | Zbl
[5] Berkovits J., Mustonen V., “On Topological Degree for Mappings of Monotone Type”, Nonlinear Analysis: Theory, Methods and Applications, 10:12 (1986), 1373–1383 | DOI | MR | Zbl
[6] Berkovits J., Mustonen V., Nonlinear Mappings of Monotone Type I. Classification and Degree Theory, Preprint No 2/88, Mathematics, University of Oulu | MR
[7] Fan X. L., Zhang Q. H., “Existence of Solutions for $p(x)$-Laplacian Dirichlet Problem”, Nonlinear Analysis: Theory, Methods and Applications, 52:8 (2003), 1843–1852 | DOI | MR | Zbl
[8] Iliaş P. S., “Existence and Multiplicity of Solutions of a $p(x)$-Laplacian Equations in a Bounded Domain”, Revue Roumaine des Mathematiques Pures et Appliquees, 52:6 (2007), 639–653 | MR | Zbl
[9] Fan X. L., Zhao D., “On the Spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$”, Journal of Mathematical Analysis and Applications, 263:2 (2001), 424–446 | DOI | MR | Zbl
[10] Kováčik O., Rákosník J., “On Spaces $L^{p(x)}$ and $W^{1,p(x)}$”, Czechoslovak Mathematical Journal, 41 (1991), 592–618 | DOI | MR | Zbl
[11] Zhao D., Qiang W. J., Fan X. L., “On Generalizerd Orlicz Spaces $L^{p(x)}(\Omega)$”, Journal of Gansu Sciences, 9:2 (1996), 1–7
[12] Samko S. G., “Density of $\mathcal{C}_0^\infty (\mathbb{R}^N)$ in the Generalized Sobolev Spaces $W^{m,p(x)}(\mathbb{R}^N)$”, Doklady Akademii Nauk, 369:4 (1999), 451–454 | MR | Zbl
[13] Chang K. C., Critical Point Theory and Applications, Shanghai Scientific and Technology Press, Shanghai, 1986 | MR | Zbl
[14] Zeidler E., Nonlinear Functional Analysis and its Applications, v. II/B, Nonlinear Monotone Operators, Springer-Verlag, New York, 1985 | MR | Zbl