Existence results for a Dirichlet boundary value problem involving the $p(x)$-Laplacian operator
Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 2, pp. 5-13
Voir la notice de l'article provenant de la source Math-Net.Ru
The aim of this paper is to establish the existence of weak solutions, in $W_0^{1,p(x)}(\Omega)$, for a Dirichlet boundary value problem involving the $p(x)$-Laplacian operator. Our technical approach is based on the Berkovits topological degree theory for a class of demicontinuous operators of generalized $(S_+)$ type. We also use as a necessary tool the properties of variable Lebesgue and Sobolev spaces, and specially properties of $p(x)$-Laplacian operator. In order to use this theory, we will transform our problem into an abstract Hammerstein equation of the form $v+S\circ Tv=0$ in the reflexive Banach space $W^{-1,p'(x)}(\Omega)$ which is the dual space of $W_0^{1,p(x)}(\Omega)$. Note also that the problem can be seen as a nonlinear eigenvalue problem of the form$Au=\lambda u,$ where $Au:=-\mathrm{div}(|\nabla u|^{p(x)-2}\nabla u)-f(x,u)$. When this problem admits a non-zero weak solution $u$, $\lambda$ is an eigenvalue of it and $u$ is an associated eigenfunction.
@article{VMJ_2022_24_2_a0,
author = {M. Ait Hammou},
title = {Existence results for a {Dirichlet} boundary value problem involving the $p(x)${-Laplacian} operator},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {5--13},
publisher = {mathdoc},
volume = {24},
number = {2},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2022_24_2_a0/}
}
TY - JOUR AU - M. Ait Hammou TI - Existence results for a Dirichlet boundary value problem involving the $p(x)$-Laplacian operator JO - Vladikavkazskij matematičeskij žurnal PY - 2022 SP - 5 EP - 13 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMJ_2022_24_2_a0/ LA - en ID - VMJ_2022_24_2_a0 ER -
M. Ait Hammou. Existence results for a Dirichlet boundary value problem involving the $p(x)$-Laplacian operator. Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 2, pp. 5-13. http://geodesic.mathdoc.fr/item/VMJ_2022_24_2_a0/