Existence results for a Dirichlet boundary value problem involving the $p(x)$-Laplacian operator
Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 2, pp. 5-13 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The aim of this paper is to establish the existence of weak solutions, in $W_0^{1,p(x)}(\Omega)$, for a Dirichlet boundary value problem involving the $p(x)$-Laplacian operator. Our technical approach is based on the Berkovits topological degree theory for a class of demicontinuous operators of generalized $(S_+)$ type. We also use as a necessary tool the properties of variable Lebesgue and Sobolev spaces, and specially properties of $p(x)$-Laplacian operator. In order to use this theory, we will transform our problem into an abstract Hammerstein equation of the form $v+S\circ Tv=0$ in the reflexive Banach space $W^{-1,p'(x)}(\Omega)$ which is the dual space of $W_0^{1,p(x)}(\Omega)$. Note also that the problem can be seen as a nonlinear eigenvalue problem of the form$Au=\lambda u,$ where $Au:=-\mathrm{div}(|\nabla u|^{p(x)-2}\nabla u)-f(x,u)$. When this problem admits a non-zero weak solution $u$, $\lambda$ is an eigenvalue of it and $u$ is an associated eigenfunction.
@article{VMJ_2022_24_2_a0,
     author = {M. Ait Hammou},
     title = {Existence results for a {Dirichlet} boundary value problem involving the $p(x)${-Laplacian} operator},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {5--13},
     year = {2022},
     volume = {24},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2022_24_2_a0/}
}
TY  - JOUR
AU  - M. Ait Hammou
TI  - Existence results for a Dirichlet boundary value problem involving the $p(x)$-Laplacian operator
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2022
SP  - 5
EP  - 13
VL  - 24
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMJ_2022_24_2_a0/
LA  - en
ID  - VMJ_2022_24_2_a0
ER  - 
%0 Journal Article
%A M. Ait Hammou
%T Existence results for a Dirichlet boundary value problem involving the $p(x)$-Laplacian operator
%J Vladikavkazskij matematičeskij žurnal
%D 2022
%P 5-13
%V 24
%N 2
%U http://geodesic.mathdoc.fr/item/VMJ_2022_24_2_a0/
%G en
%F VMJ_2022_24_2_a0
M. Ait Hammou. Existence results for a Dirichlet boundary value problem involving the $p(x)$-Laplacian operator. Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 2, pp. 5-13. http://geodesic.mathdoc.fr/item/VMJ_2022_24_2_a0/

[1] Brouwer L. E. J., “Uber Abbildung von Mannigfaltigkeiten”, Mathematische Annalen, 71:1 (1912), 97–115 | DOI | MR | Zbl

[2] Leray J., Schauder J., “Topologie et Équationes Fonctionnelles”, Annales Scientifiques de l'École Normale Supérieure, 51 (1934), 45–78 | DOI | MR

[3] Berkovits J., On the Degree Theory for Nonlinear Mappings of Monotone Type, Annales Academia Scientiarum Fennica. Series A I. Mathematica Dissertationes, 58, 1986, 58 pp. | MR | Zbl

[4] Berkovits J., “Extension of the Leray-Schauder Degree for abstract Hammerstein Type Mappings”, Journal of Differential Equations, 234:1 (2007), 289–310 | DOI | MR | Zbl

[5] Berkovits J., Mustonen V., “On Topological Degree for Mappings of Monotone Type”, Nonlinear Analysis: Theory, Methods and Applications, 10:12 (1986), 1373–1383 | DOI | MR | Zbl

[6] Berkovits J., Mustonen V., Nonlinear Mappings of Monotone Type I. Classification and Degree Theory, Preprint No 2/88, Mathematics, University of Oulu | MR

[7] Fan X. L., Zhang Q. H., “Existence of Solutions for $p(x)$-Laplacian Dirichlet Problem”, Nonlinear Analysis: Theory, Methods and Applications, 52:8 (2003), 1843–1852 | DOI | MR | Zbl

[8] Iliaş P. S., “Existence and Multiplicity of Solutions of a $p(x)$-Laplacian Equations in a Bounded Domain”, Revue Roumaine des Mathematiques Pures et Appliquees, 52:6 (2007), 639–653 | MR | Zbl

[9] Fan X. L., Zhao D., “On the Spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$”, Journal of Mathematical Analysis and Applications, 263:2 (2001), 424–446 | DOI | MR | Zbl

[10] Kováčik O., Rákosník J., “On Spaces $L^{p(x)}$ and $W^{1,p(x)}$”, Czechoslovak Mathematical Journal, 41 (1991), 592–618 | DOI | MR | Zbl

[11] Zhao D., Qiang W. J., Fan X. L., “On Generalizerd Orlicz Spaces $L^{p(x)}(\Omega)$”, Journal of Gansu Sciences, 9:2 (1996), 1–7

[12] Samko S. G., “Density of $\mathcal{C}_0^\infty (\mathbb{R}^N)$ in the Generalized Sobolev Spaces $W^{m,p(x)}(\mathbb{R}^N)$”, Doklady Akademii Nauk, 369:4 (1999), 451–454 | MR | Zbl

[13] Chang K. C., Critical Point Theory and Applications, Shanghai Scientific and Technology Press, Shanghai, 1986 | MR | Zbl

[14] Zeidler E., Nonlinear Functional Analysis and its Applications, v. II/B, Nonlinear Monotone Operators, Springer-Verlag, New York, 1985 | MR | Zbl