$\varphi$ is a weighted function on $[0,h]$) from $B_{2}$, for which the value of the smoothness characteristics of the $\Lambda_{m}(f)$ averaged with a given weight, is bounded from above by one. It should be noted that the results presented in the article are generalizations of the recently published results of the second author [10] for the joint approximation of periodic functions by trigonometric polynomials to the case of joint approximation of functions analytic in the unit circle by complex algebraic polynomials in the Bergman space.
@article{VMJ_2022_24_1_a9,
author = {Kh. M. Khuromonov and M. Sh. Shabozov},
title = {Jackson{\textendash}Stechkin type inequalities between the best joint polynomials approximation and a smoothness characteristic in {Bergman} space},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {109--120},
year = {2022},
volume = {24},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2022_24_1_a9/}
}
TY - JOUR AU - Kh. M. Khuromonov AU - M. Sh. Shabozov TI - Jackson–Stechkin type inequalities between the best joint polynomials approximation and a smoothness characteristic in Bergman space JO - Vladikavkazskij matematičeskij žurnal PY - 2022 SP - 109 EP - 120 VL - 24 IS - 1 UR - http://geodesic.mathdoc.fr/item/VMJ_2022_24_1_a9/ LA - ru ID - VMJ_2022_24_1_a9 ER -
%0 Journal Article %A Kh. M. Khuromonov %A M. Sh. Shabozov %T Jackson–Stechkin type inequalities between the best joint polynomials approximation and a smoothness characteristic in Bergman space %J Vladikavkazskij matematičeskij žurnal %D 2022 %P 109-120 %V 24 %N 1 %U http://geodesic.mathdoc.fr/item/VMJ_2022_24_1_a9/ %G ru %F VMJ_2022_24_1_a9
Kh. M. Khuromonov; M. Sh. Shabozov. Jackson–Stechkin type inequalities between the best joint polynomials approximation and a smoothness characteristic in Bergman space. Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 1, pp. 109-120. http://geodesic.mathdoc.fr/item/VMJ_2022_24_1_a9/
[1] Smirnov V. I., Lebedev N. A., Konstruktivnaya teoriya funktsii kompleksnogo peremennogo, Nauka, M.–L., 1964 | MR
[2] Abilov V. A., Abilova F. V., Kerimov M. K., “Tochnye otsenki skorosti skhodimosti ryadov Fure funktsii kompleksnoi peremennoi v prostranstve $L_{2}(D,p(z))$”, Zhurn. vychisl. matematiki i mat. fiziki, 50:6 (2010), 999–1004 | MR | Zbl
[3] Shabozov M. Sh., Saidusainov M. S., “Srednekvadratichnoe priblizhenie funktsii kompleksnoi peremennoi ryadami Fure v vesovom prostranstve Bergmana”, Vladikavk. mat. zhurn., 20:1 (2018), 86–97 | DOI | MR | Zbl
[4] Shabozov M. Sh., Saidusainov M. S., “Verkhnie grani priblizheniya nekotorykh klassov funktsii kompleksnoi peremennoi ryadami Fure v prostranstve $L_2$ i znacheniya $n$-poperechnikov”, Mat. zametki, 103:4 (2018), 617–631 | DOI | Zbl
[5] Shabozov M. Sh., Saidusainov M. S., “Srednekvadraticheskoe priblizhenie funktsii kompleksnogo peremennogo summami Fure po ortogonalnym sistemam”, Tr. Instituta matematiki i mekhaniki UrO RAN, 25, no. 2, 2019, 258–272 | DOI
[6] Shabozov M. Sh., Khuromonov Kh. M., “O nailuchshem priblizhenii v srednem funktsii kompleksnogo peremennogo ryadami Fure v prostranstve Bergmana”, Izv. vuzov, 2020, no. 2, 74–92 | DOI | Zbl
[7] Runovskii K. V., “O priblizhenii semeistvami lineinykh polinomialnykh operatorov v prostranstve $L_{p}$, $0
1$”, Mat. sb., 185:8 (1994), 81–102 | Zbl[8] Vakarchuk S. B., Zabutnaya V. I., “Neravenstva mezhdu nailuchshimi polinomialnymi priblizheniyami i nekotorymi kharakteristikami gladkosti v prostranstve $L_{2}$ i poperechniki klassov funktsii”, Mat. zametki, 99:2 (2016), 215–238 | DOI | Zbl
[9] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov summ, ryadov i proizvedenii, Nauka, M., 1971, 1108 pp. | MR