Jackson–Stechkin type inequalities between the best joint polynomials approximation and a smoothness characteristic in Bergman space
Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 1, pp. 109-120 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the extremal problem of finding the exact constants between the best joint polynomial approximations of analytic functions and their intermediate derivatives in the Bergman space. Let $U:=\{z:|z|<1\}$ be the unit disc on the complex plane, $B_{2}:=B_{2}(U)$ the Bergman space of functions $f$ analytic in the disc with finite $L_2$ norm; $B_{2}^{(r)}:=B_{2}^{(r)}(U)$ ($r\in\mathbb{Z}_{+}$, $ B_{2}^{(0)}:=B_{2}$) is a class of functions $f\in B_{2}$, for which $f^{(r)}\in B_{2}$. In this paper, exact constants in Jackson–Stechkin type inequalities for $\Lambda_{m}(f)$, $m\in\mathbb{N}$, the smoothness characteristic determined by averaging the norms of finite differences of the $m$-th order of the highest derivative of a function $f$ belonging to the Bergman space $B_{2}$ are found. Also we solve the extremal problem of the best joint polynomial approximation of the class $W_{2,m}^{(r)}(\Phi):=W_{2}^{(r)}(\Lambda_{m},\Phi)$ ($m\in\mathbb{N}$, $r\in\mathbb{Z}_{+}$) of functions from $B_{2}^{(r)}$, $r\in \mathbb{Z}_{+}$, for which the value of the smoothness characteristic $\Lambda_{m}(f)$ is bounded from above by the majorant $\Phi$ and the class $W_{p,m}^{(r)}(\varphi,h):=W_{p}^{(r)}(\Lambda_{m},\varphi,h)$ ($m\in\mathbb{N}$, $r\in\mathbb{Z}_{+},$ $h\in[0,2\pi],$ $0 $\varphi$ is a weighted function on $[0,h]$) from $B_{2}$, for which the value of the smoothness characteristics of the $\Lambda_{m}(f)$ averaged with a given weight, is bounded from above by one. It should be noted that the results presented in the article are generalizations of the recently published results of the second author [10] for the joint approximation of periodic functions by trigonometric polynomials to the case of joint approximation of functions analytic in the unit circle by complex algebraic polynomials in the Bergman space.
@article{VMJ_2022_24_1_a9,
     author = {Kh. M. Khuromonov and M. Sh. Shabozov},
     title = {Jackson{\textendash}Stechkin type inequalities between the best joint polynomials approximation and a smoothness characteristic in {Bergman} space},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {109--120},
     year = {2022},
     volume = {24},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2022_24_1_a9/}
}
TY  - JOUR
AU  - Kh. M. Khuromonov
AU  - M. Sh. Shabozov
TI  - Jackson–Stechkin type inequalities between the best joint polynomials approximation and a smoothness characteristic in Bergman space
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2022
SP  - 109
EP  - 120
VL  - 24
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMJ_2022_24_1_a9/
LA  - ru
ID  - VMJ_2022_24_1_a9
ER  - 
%0 Journal Article
%A Kh. M. Khuromonov
%A M. Sh. Shabozov
%T Jackson–Stechkin type inequalities between the best joint polynomials approximation and a smoothness characteristic in Bergman space
%J Vladikavkazskij matematičeskij žurnal
%D 2022
%P 109-120
%V 24
%N 1
%U http://geodesic.mathdoc.fr/item/VMJ_2022_24_1_a9/
%G ru
%F VMJ_2022_24_1_a9
Kh. M. Khuromonov; M. Sh. Shabozov. Jackson–Stechkin type inequalities between the best joint polynomials approximation and a smoothness characteristic in Bergman space. Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 1, pp. 109-120. http://geodesic.mathdoc.fr/item/VMJ_2022_24_1_a9/

[1] Smirnov V. I., Lebedev N. A., Konstruktivnaya teoriya funktsii kompleksnogo peremennogo, Nauka, M.–L., 1964 | MR

[2] Abilov V. A., Abilova F. V., Kerimov M. K., “Tochnye otsenki skorosti skhodimosti ryadov Fure funktsii kompleksnoi peremennoi v prostranstve $L_{2}(D,p(z))$”, Zhurn. vychisl. matematiki i mat. fiziki, 50:6 (2010), 999–1004 | MR | Zbl

[3] Shabozov M. Sh., Saidusainov M. S., “Srednekvadratichnoe priblizhenie funktsii kompleksnoi peremennoi ryadami Fure v vesovom prostranstve Bergmana”, Vladikavk. mat. zhurn., 20:1 (2018), 86–97 | DOI | MR | Zbl

[4] Shabozov M. Sh., Saidusainov M. S., “Verkhnie grani priblizheniya nekotorykh klassov funktsii kompleksnoi peremennoi ryadami Fure v prostranstve $L_2$ i znacheniya $n$-poperechnikov”, Mat. zametki, 103:4 (2018), 617–631 | DOI | Zbl

[5] Shabozov M. Sh., Saidusainov M. S., “Srednekvadraticheskoe priblizhenie funktsii kompleksnogo peremennogo summami Fure po ortogonalnym sistemam”, Tr. Instituta matematiki i mekhaniki UrO RAN, 25, no. 2, 2019, 258–272 | DOI

[6] Shabozov M. Sh., Khuromonov Kh. M., “O nailuchshem priblizhenii v srednem funktsii kompleksnogo peremennogo ryadami Fure v prostranstve Bergmana”, Izv. vuzov, 2020, no. 2, 74–92 | DOI | Zbl

[7] Runovskii K. V., “O priblizhenii semeistvami lineinykh polinomialnykh operatorov v prostranstve $L_{p}$, $0

1$”, Mat. sb., 185:8 (1994), 81–102 | Zbl

[8] Vakarchuk S. B., Zabutnaya V. I., “Neravenstva mezhdu nailuchshimi polinomialnymi priblizheniyami i nekotorymi kharakteristikami gladkosti v prostranstve $L_{2}$ i poperechniki klassov funktsii”, Mat. zametki, 99:2 (2016), 215–238 | DOI | Zbl

[9] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov summ, ryadov i proizvedenii, Nauka, M., 1971, 1108 pp. | MR