@article{VMJ_2022_24_1_a8,
author = {V. I. Subbotin},
title = {On composite $RR$-polyhedra of the second type},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {100--108},
year = {2022},
volume = {24},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2022_24_1_a8/}
}
V. I. Subbotin. On composite $RR$-polyhedra of the second type. Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 1, pp. 100-108. http://geodesic.mathdoc.fr/item/VMJ_2022_24_1_a8/
[1] Deza M., Grishukhin V. P., Shtogrin M. I., Izometricheskie poliedralnye podgrafy v giperkubakh i kubicheskikh reshetkakh, MTsNMO, M., 2007, 97 pp.
[2] Cromwell P. R., Polyhedra, Cambridge University Press, Cambridge, 1999, 451 pp. | MR | Zbl
[3] Grunbaum B., “Regular polyhedra — old and new”, Aeq. Math., 16:1–2 (1977), 1–20 | DOI | MR | Zbl
[4] Zalgaller V. A., “Vypuklye mnogogranniki s pravilnymi granyami”, Zap. nauchn. sem. LOMI, 2, 1967, 1–220 | MR
[5] Johnson N. W., “Convex polyhedra with regular faces”, Can. J. Math., 18:1 (1966), 169–200 | DOI | MR | Zbl
[6] Subbotin V. I., “Ob odnom klasse mnogogrannikov s simmetrichnymi zvezdami vershin”, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 169, 2019, 88–97 | DOI
[7] Subbotin V. I., “On two classes of polyhedra with rhombic vertices”, J. Math. Sci., 251 (2020), 531–538 | DOI | MR | Zbl
[8] Subbotin V. I., “Suschestvovanie i polnota perechisleniya trekhmernykh $RR$-mnogogrannikov”, Geometr. metody v teorii upravleniya i matem. fizike, Izd-vo Ryazanskogo gos. un-ta, Ryazan, 2021, 15
[9] Subbotin V. I., “O polnote spiska vypuklykh $RR$-mnogogrannikov”, Chebyshevskii sb., 2:1 (2020), 297–309 | DOI