Regularized trace of a multipoint boundary value problem with a discontinuous weight function
Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 1, pp. 65-86 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article proposes a method for calculating the regularized trace for a differential operator with a piecewise smooth potential and multipoint boundary conditions. The weight function of the differential operator is discontinuous. Using the Naimark method on the sections of the continuity of the potential and the weight function for large values of the spectral parameter, the asymptotics of solutions of differential equations defining the operator under study is obtained. The asymptotics of the solutions enables us to study the conditions of «conjugation» at the point of discontinuity of the coefficients. The necessity of the conditions of «conjugation» follows from physical considerations. The studied boundary value problems arise in the study of vibrations of rods, beams and bridges composed of materials of different densities. The multipoint boundary conditions defining the operator are studied. The technically difficult part of the study was successfully completed — the indicator diagram of the equation whose roots are the eigenvalues of the operator was studied. The asymptotics of the eigenvalues of the operator is calculated. Using the asymptotics of the eigenvalues by the Lidsky–Sadovnichy method, the first regularized trace of the differential operator is calculated.
@article{VMJ_2022_24_1_a6,
     author = {S. I. Mitrokhin},
     title = {Regularized trace of a multipoint boundary value problem with a discontinuous weight function},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {65--86},
     year = {2022},
     volume = {24},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2022_24_1_a6/}
}
TY  - JOUR
AU  - S. I. Mitrokhin
TI  - Regularized trace of a multipoint boundary value problem with a discontinuous weight function
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2022
SP  - 65
EP  - 86
VL  - 24
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMJ_2022_24_1_a6/
LA  - ru
ID  - VMJ_2022_24_1_a6
ER  - 
%0 Journal Article
%A S. I. Mitrokhin
%T Regularized trace of a multipoint boundary value problem with a discontinuous weight function
%J Vladikavkazskij matematičeskij žurnal
%D 2022
%P 65-86
%V 24
%N 1
%U http://geodesic.mathdoc.fr/item/VMJ_2022_24_1_a6/
%G ru
%F VMJ_2022_24_1_a6
S. I. Mitrokhin. Regularized trace of a multipoint boundary value problem with a discontinuous weight function. Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 1, pp. 65-86. http://geodesic.mathdoc.fr/item/VMJ_2022_24_1_a6/

[1] Ilin V. A., “O skhodimosti razlozhenii po sobstvennym funktsiyam v tochkakh razryva koeffitsientov differentsialnogo operatora”, Mat. zametki, 22:5 (1977), 679–698 | MR

[2] Budak A. B., “O razlozhenii po sobstvennym funktsiyam differentsialnogo operatora 4-go poryadka s kusochno-postoyannym starshim koeffitsientom”, Dif. uravneniya, 16:9 (1980), 1545–1558 | MR | Zbl

[3] Gottlieb H. P. W., “Iso-spectral operators: some model examples with discontinuous coefficients”, J. Math. Anal. Appl., 132 (1988), 123–137 | DOI | MR | Zbl

[4] Belabassi Yu., “Regulyarizovannyi sled mnogotochechnoi zadachi”, Vestn. Moskovskogo un-ta. Ser. Matematika, mekhanika, 1981, no. 2, 35–41

[5] Gelfand I. M., Levitan B. M., “Ob odnom prostom tozhdestve dlya sobstvennykh znachenii differentsialnogo operatora vtorogo poryadka”, Dokl. AN SSSR, 88:4 (1953), 593–596 | Zbl

[6] Sadovnichii V. A., “O sledakh obyknovennykh differentsialnykh operatorov vysshikh poryadkov”, Mat. sb., 72:2(114) (1967), 293–317 | Zbl

[7] Lidskii V. V., Sadovnichii V. A., “Regulyarizovannye summy kornei odnogo klassa tselykh funktsii”, Funktsion. analiz i ego pril., 1:2 (1967), 52–59 | MR | Zbl

[8] Mitrokhin S. I., “O formulakh regulyarizovannykh sledov dlya differentsialnykh operatorov vtorogo poryadka s razryvnymi koeffitsientami”, Vestn. MGU. Ser. Matematika. Mekhanika, 1986, no. 6, 3–6 | MR

[9] Mitrokhin S. I., “O formulakh sledov dlya odnoi kraevoi zadachi s funktsionalno-differentsialnym uravneniem s razryvnym koeffitsientom”, Dif. uravneniya, 22:6 (1986), 927–931 | MR | Zbl

[10] Mitrokhin S. I., “O spektralnykh svoistvakh differentsialnykh operatorov s razryvnymi koeffitsientami”, Dif. uravneniya, 28:3 (1992), 530–532 | MR | Zbl

[11] Mitrokhin S. I., “O nekotorykh spektralnykh svoistvakh differentsialnykh operatorov vtorogo poryadka s razryvnoi vesovoi funktsiei”, Dokl. RAN, 356:1 (1997), 13–15 | MR | Zbl

[12] Mitrokhin S. I., “Mnogotochechnye differentsialnye operatory: «rasscheplenie» kratnykh v glavnom sobstvennykh znachenii”, Izv. Saratov. un-ta. Novaya ser. Ser. Matematika. Mekhanika. Informatika, 17:1 (2017), 5–18 | DOI | MR | Zbl

[13] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969, 528 pp.

[14] Mitrokhin S. I., “Asimptotika sobstvennykh znachenii differentsialnogo operatora so znakoperemennoi vesovoi funktsiei”, Izv. vuzov. Matematika, 2018, no. 6, 31–47 | MR | Zbl

[15] Bellman R., Kuk K. L., Differentsialno-raznostnye uravneniya, Mir, M., 1967, 548 pp.

[16] Mitrokhin S. I., “Ob asimptotike spektra mnogotochechnykh differentsialnykh operatorov s summiruemym potentsialom”, Sib. zhurn. chist. i prikl. matem., 17:2 (2017), 69–81 | MR | Zbl

[17] Sadovnichii V. A., Teoriya operatorov, Drofa, M., 2001, 384 pp.