Existence and uniqueness theorems for a differential equation with a discontinuous right-hand side
Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 1, pp. 54-64

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider new conditions for existence and uniqueness of a Caratheodory solution for an initial value problem with a discontinuous right-hand side. The method used here is based on: 1) the representation of the solution as a Fourier series in a system of functions orthogonal in Sobolev sense and generated by a classical orthogonal system; 2) the use of a specially constructed operator $A$ acting in $l_2$, the fixed point of which are the coefficients of the Fourier series of the solution. Under conditions given here the operator $A$ is contractive. This property can be employed to construct robust, fast and easy to implement spectral numerical methods of solving an initial value problem with discontinuous right-hand side. Relationship of new conditions with classical ones (Caratheodory conditions with Lipschitz condition) is also studied. Namely, we show that if in classical conditions we replace $L^1$ by $L^2$, then they become equivalent to the conditions given in this article.
@article{VMJ_2022_24_1_a5,
     author = {M. G. Magomed-Kasumov},
     title = {Existence and uniqueness theorems for a differential equation with a discontinuous right-hand side},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {54--64},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2022_24_1_a5/}
}
TY  - JOUR
AU  - M. G. Magomed-Kasumov
TI  - Existence and uniqueness theorems for a differential equation with a discontinuous right-hand side
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2022
SP  - 54
EP  - 64
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2022_24_1_a5/
LA  - en
ID  - VMJ_2022_24_1_a5
ER  - 
%0 Journal Article
%A M. G. Magomed-Kasumov
%T Existence and uniqueness theorems for a differential equation with a discontinuous right-hand side
%J Vladikavkazskij matematičeskij žurnal
%D 2022
%P 54-64
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2022_24_1_a5/
%G en
%F VMJ_2022_24_1_a5
M. G. Magomed-Kasumov. Existence and uniqueness theorems for a differential equation with a discontinuous right-hand side. Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 1, pp. 54-64. http://geodesic.mathdoc.fr/item/VMJ_2022_24_1_a5/