Existence and uniqueness theorems for a differential equation with a discontinuous right-hand side
Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 1, pp. 54-64
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider new conditions for existence and uniqueness of a Caratheodory solution for an initial value problem with a discontinuous right-hand side. The method used here is based on: 1) the representation of the solution as a Fourier series in a system of functions orthogonal in Sobolev sense and generated by a classical orthogonal system; 2) the use of a specially constructed operator $A$ acting in $l_2$, the fixed point of which are the coefficients of the Fourier series of the solution. Under conditions given here the operator $A$ is contractive. This property can be employed to construct robust, fast and easy to implement spectral numerical methods of solving an initial value problem with discontinuous right-hand side. Relationship of new conditions with classical ones (Caratheodory conditions with Lipschitz condition) is also studied. Namely, we show that if in classical conditions we replace $L^1$ by $L^2$, then they become equivalent to the conditions given in this article.
@article{VMJ_2022_24_1_a5,
author = {M. G. Magomed-Kasumov},
title = {Existence and uniqueness theorems for a differential equation with a discontinuous right-hand side},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {54--64},
publisher = {mathdoc},
volume = {24},
number = {1},
year = {2022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2022_24_1_a5/}
}
TY - JOUR AU - M. G. Magomed-Kasumov TI - Existence and uniqueness theorems for a differential equation with a discontinuous right-hand side JO - Vladikavkazskij matematičeskij žurnal PY - 2022 SP - 54 EP - 64 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMJ_2022_24_1_a5/ LA - en ID - VMJ_2022_24_1_a5 ER -
%0 Journal Article %A M. G. Magomed-Kasumov %T Existence and uniqueness theorems for a differential equation with a discontinuous right-hand side %J Vladikavkazskij matematičeskij žurnal %D 2022 %P 54-64 %V 24 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMJ_2022_24_1_a5/ %G en %F VMJ_2022_24_1_a5
M. G. Magomed-Kasumov. Existence and uniqueness theorems for a differential equation with a discontinuous right-hand side. Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 1, pp. 54-64. http://geodesic.mathdoc.fr/item/VMJ_2022_24_1_a5/