On normal $\mu$-Hankel operators
Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 1, pp. 36-43 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Hankel operators form one of the most important classes of operators in spaces of analytic functions and have numerous implementations. These operators can be defined as operators having Hankel matrices (i. e., matrices whose elements depend only on the sum of the indices) with respect to some orthonormal basis in a separable Hilbert space. This work continues the research begun in the work of the authors «$\mu$-Hankel operators on Hilbert spaces», Opuscula Math., 2021, vol. 41, no. 6, p. 881–899, where a new class of operators in Hilbert spaces was introduced ($\mu$-Hankel operators, $\mu$ is a complex parameter). Such operators act in a separable Hilbert space and, in some orthonormal basis of this space, have matrices whose diagonals, orthogonal to the main diagonal, are geometric progressions with denominator $\mu$. Thus, the classical Hankel operators correspond to the case $\mu=1$. The main result of the paper is a criterion for the normality of $\mu$-Hankel operators. By analogy with the Hankel operators, the considered class of operators has specific implementations in the form of integral operators, which allows apply to these operators the results obtained in an abstract context, and thereby contribute to the theory of integral operators. In this paper, such a realization is considered in the Hardy space on the unit circle. Criteria for the self-adjointness and normality of these operators are given.
@article{VMJ_2022_24_1_a3,
     author = {E. Yu. Kuzmenkova and A. R. Mirotin},
     title = {On normal $\mu${-Hankel} operators},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {36--43},
     year = {2022},
     volume = {24},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2022_24_1_a3/}
}
TY  - JOUR
AU  - E. Yu. Kuzmenkova
AU  - A. R. Mirotin
TI  - On normal $\mu$-Hankel operators
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2022
SP  - 36
EP  - 43
VL  - 24
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMJ_2022_24_1_a3/
LA  - ru
ID  - VMJ_2022_24_1_a3
ER  - 
%0 Journal Article
%A E. Yu. Kuzmenkova
%A A. R. Mirotin
%T On normal $\mu$-Hankel operators
%J Vladikavkazskij matematičeskij žurnal
%D 2022
%P 36-43
%V 24
%N 1
%U http://geodesic.mathdoc.fr/item/VMJ_2022_24_1_a3/
%G ru
%F VMJ_2022_24_1_a3
E. Yu. Kuzmenkova; A. R. Mirotin. On normal $\mu$-Hankel operators. Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 1, pp. 36-43. http://geodesic.mathdoc.fr/item/VMJ_2022_24_1_a3/

[1] Nikolski N. K., Operators, Functions, and Systems: An Easy Reading, v. 1, Mathematical Surveys and Monographs, 92, Hardy, Hankel, and Toeplitz, American Mathematical Society, 2002, 461 pp. | MR | Zbl

[2] Nikolski N. K., Operators, Functions, and Systems: An Easy Reading, v. 2, Mathematical Surveys and Monographs, 93, Model Operators and Systems, American Mathematical Society, 2002, 438 pp. | MR | Zbl

[3] Peller V. V., Operatory Gankelya i ikh prilozheniya, Monografiya, per. s angl., NITs «Regulyarnaya i khaoticheskaya dinamika», Institut kompyuternykh issledovanii, M.–Izhevsk, 2005, 1028 pp. | MR

[4] Ho M. C., “On the rotational invariance for the essential spectrum of $\lambda$-Toeplitz operators”, J. Math. Anal. Appl., 413:2 (2014), 557–565 | DOI | MR | Zbl

[5] Mirotin A. R., “On the essential spectrum of $\lambda$-Toeplitz operators over compact Abelian groups”, J. Math. Anal. Appl., 424 (2015), 1286–1295 | DOI | MR | Zbl

[6] Mirotin A. R., Kuzmenkova E. Yu., “$\mu$-Hankel operators on hilbert spaces”, Opuscula Math., 41:6 (2021), 881–899 | DOI | MR

[7] Martnnez-Avendaño R. A., Rosenthal P., An Introduction to Operators on the Hardy–Hilbert Space, Springer, N. Y., 2007, 229 pp. | MR | Zbl

[8] Akhiezer N. I., Glazman I., Teoriya lineinykh operatorov v giltbertovom prostranstve, 2-e izd., Nauka, M., 1966, 544 pp. | MR

[9] Mirotin A. R., Kovalyova I. S., “The Markov–Stieltjes transform on Hardy and Lebesgue spaces”, Integral Transforms and Special Functions, 27:12 (2016), 995–1007 ; “Corrigendum to our paper “The Markov–Stieltjes transform on Hardy and Lebesgue spaces””, Integral Transforms and Special Functions, 28:5 (2017), 421—422 | DOI | MR | Zbl | DOI | MR | Zbl

[10] Mirotin A. R., Kovaleva I. S., “Obobschennyi operator Markova — Stiltesa v prostranstvvakh Khardi i Lebega”, Tr. In-ta matematiki, 25:1 (2017), 39–50 | MR | Zbl

[11] Weidmann J., Linear Operators in Hilbert Spaces, Springer, N.Y., 1980, 415 pp. | MR | Zbl

[12] Zhu K., Operator Theory in Function Spaces, Mathematical Surveys and Monographs, 138, Second Edition, American Mathematical Society, 2007, 348 pp. | DOI | MR | Zbl

[13] Prudnikov A. P., Brychkov Yu. A., Marichev A. I., Integraly i ryady. Elementarnye funktsii, Nauka, M., 1981, 800 pp. | MR