@article{VMJ_2022_24_1_a2,
author = {S. Georgiev and A. Hakem},
title = {A nonexistence result for the semi-linear {Moore{\textendash}Gibson{\textendash}Thompson} equation with nonlinear memory on the {Heisenberg} group},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {24--35},
year = {2022},
volume = {24},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2022_24_1_a2/}
}
TY - JOUR AU - S. Georgiev AU - A. Hakem TI - A nonexistence result for the semi-linear Moore–Gibson–Thompson equation with nonlinear memory on the Heisenberg group JO - Vladikavkazskij matematičeskij žurnal PY - 2022 SP - 24 EP - 35 VL - 24 IS - 1 UR - http://geodesic.mathdoc.fr/item/VMJ_2022_24_1_a2/ LA - en ID - VMJ_2022_24_1_a2 ER -
%0 Journal Article %A S. Georgiev %A A. Hakem %T A nonexistence result for the semi-linear Moore–Gibson–Thompson equation with nonlinear memory on the Heisenberg group %J Vladikavkazskij matematičeskij žurnal %D 2022 %P 24-35 %V 24 %N 1 %U http://geodesic.mathdoc.fr/item/VMJ_2022_24_1_a2/ %G en %F VMJ_2022_24_1_a2
S. Georgiev; A. Hakem. A nonexistence result for the semi-linear Moore–Gibson–Thompson equation with nonlinear memory on the Heisenberg group. Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 1, pp. 24-35. http://geodesic.mathdoc.fr/item/VMJ_2022_24_1_a2/
[1] Chen W., Palmieri A., “A Blow-up Result for the Semilinear Moore–Gibson–Thompson Equation with Nonlinearity of Derivative Type in the Conservative Case”, Evolution Equations and Control Theory, 10:4 (2021), 673–687 | DOI | MR | Zbl
[2] Caixeta A. H., Lasiecka I., Domingos Cavalcanti V. N., “On Long Time Behavior of Moore–Gibson–Thompson Equation with Molecular Relaxation”, Evolution Equations and Control Theory, 5:4 (2016), 661–676 | DOI | MR | Zbl
[3] Lecaros R., Mercado A., Zamorano S., An Inverse Problem for Moore–Gibson–Thompson Equation Arising in High Intensity Ultrasound, 2020, arXiv: 2001.07673 | DOI | Zbl
[4] Lai N. A., Takamura H., “Nonexistence of Global Solutions of Nonlinear Wave Equations with Weak Time-Dependent Damping Related to Glassey's Conjecture”, Differential Integral Equations, 32:1, 2 (2019), 37–48 | MR | Zbl
[5] Dao T. A., Fino A. Z., “Blow up Results for Semi-Linear Structural Damped Wave Model with Nonlinear Memory”, Mathematische Nachrichten, 295:2 (2022), 309–322 | DOI | MR
[6] Benibrir F., Hakem A., “Nonexistence Results for a Semi-Linear Equation with Fractional Derivatives on the Heisenberg Group”, J. Adv. Math. Stud., 11:3 (2018), 587–596 | MR | Zbl
[7] Folland G. B., Stein E. M., “Estimates for the $\partial_h$ Complex and Analysis on the Heisenberg Group”, Comm. Pure Appl. Math., 27 (1974), 492–522 | DOI | MR
[8] Garofalo N., Lanconelli E., “Existence and non Existence Results for Semilinear Equations on the Heisenberg Group”, Indiana Univ. Math. Journ., 41 (1992), 71–97 | DOI | MR
[9] Goldstein J. A., Kombe I., “Nonlinear Degenerate Parabolic Equations on the Heisenberg Group”, Int. J. Evol. Equ., 1:1 (2005), 122 | MR
[10] Folland G. B., “Fondamental Solution for Subelliptic Operators”, Bull. Amer. Math. Soc., 79 (1979), 373–376 | DOI | MR
[11] Pohozaev S., Veron L., “Nonexistence Results of Solutions of Semilinear Differential Inequalities on the Heisenberg Group”, Manuscript Math., 102 (2000), 85–99 | DOI | MR | Zbl
[12] Samko S. G., Kilbas A. A., Marichev O. I., Fractional Integrals and Derivatives, Theory and Applications, Gordon and Breach Science Publishers, 1987 | MR
[13] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, 2006, 523 pp. | DOI | MR | Zbl