@article{VMJ_2022_24_1_a0,
author = {S. N. Askhabov},
title = {System of inhomogeneous integral equations of convolution type with power nonlinearity},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {5--14},
year = {2022},
volume = {24},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2022_24_1_a0/}
}
S. N. Askhabov. System of inhomogeneous integral equations of convolution type with power nonlinearity. Vladikavkazskij matematičeskij žurnal, Tome 24 (2022) no. 1, pp. 5-14. http://geodesic.mathdoc.fr/item/VMJ_2022_24_1_a0/
[1] Askhabov S. N., Karapetyants N. K., Yakubov A. Ya., “Integral Equations of Convolution Type with Power Nonlinearity and Systems of Such Equations”, Doklady Akademii Nauk SSSR, 311:5 (1990), 1035–1039 (in Russian) | MR | Zbl
[2] Askhabov S. N., Betilgiriev M. A., “Nonlinear Integral Equations of Convolution Type with Almost Increasing Kernels in Cones”, Differential Equations, 27:2 (1991), 234–242 | MR | Zbl
[3] Askhabov S. N., Nonlinear Equations of Convolution Type, Fizmatlit, M., 2009, 304 pp. (in Russian) | MR
[4] Okrasinski W., “On the existence and uniqueness of nonnegative solutions of a certain nonlinear convolution equation”, Annal. Polon. Math., 36:1 (1979), 61–72 | DOI | MR | Zbl
[5] Okrasinski W., “Nonlinear Volterra equations and physical applications”, Extracta Math., 4:2 (1989), 51–80 | MR
[6] Keller J. J., “Propagation of simple nonlinear waves in gas filled tubes with friction”, Z. Angew. Math. Phys., 32:2 (1981), 170–181 | DOI | MR | Zbl
[7] Tikhonov A. N., “On the Cooling of Bodies During Radiation, Following the Law of Stefan'a–Boltzmann'a”, Izvestiya Akad. Nauk SSSR. Ser. Geogr. Geophiz., 1937, no. 3, 461–479 (in Russian)
[8] Ermentrout G. B., Cowan J. D., “Secondary bifurcation in neuronal nets”, SIAM J. Appl. Math., 39:2 (1980), 323–340 | DOI | MR | Zbl
[9] Askhabov S. N., “Integro-Differential Equation of the Convolution Type with a Power Nonlinearity and Inhomogeneity in the Linear Part”, Differential Equations, 56:6 (2020), 775–784 | DOI | DOI | MR | Zbl
[10] Askhabov S. N., “Nonlinear convolution integro-differential equation with variable coefficient”, Fract. Calc. Appl. Anal., 24:3 (2021), 848–864 | DOI | MR | Zbl