Bounded orthomorphisms between locally solid vector lattices
Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 4, pp. 89-95

Voir la notice de l'article provenant de la source Math-Net.Ru

The main aim of the present note is to consider bounded orthomorphisms between locally solid vector lattices. We establish a version of the remarkable Zannen theorem regarding equivalence between orthomorphisms and the underlying vector lattice for the case of all bounded orthomomorphisms. Furthermore, we investigate topological and ordered structures for these classes of orthomorphisms, as well. In particular, we show that each class of bounded orthomorphisms possesses the Levi or the $AM$-properties if and only if so is the underlying locally solid vector lattice. Moreover, we establish a similar result for the Lebesgue property, as well.
@article{VMJ_2021_23_4_a9,
     author = {R. Sabbagh and O. Zabeti},
     title = {Bounded orthomorphisms between locally solid vector lattices},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {89--95},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2021_23_4_a9/}
}
TY  - JOUR
AU  - R. Sabbagh
AU  - O. Zabeti
TI  - Bounded orthomorphisms between locally solid vector lattices
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2021
SP  - 89
EP  - 95
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2021_23_4_a9/
LA  - en
ID  - VMJ_2021_23_4_a9
ER  - 
%0 Journal Article
%A R. Sabbagh
%A O. Zabeti
%T Bounded orthomorphisms between locally solid vector lattices
%J Vladikavkazskij matematičeskij žurnal
%D 2021
%P 89-95
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2021_23_4_a9/
%G en
%F VMJ_2021_23_4_a9
R. Sabbagh; O. Zabeti. Bounded orthomorphisms between locally solid vector lattices. Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 4, pp. 89-95. http://geodesic.mathdoc.fr/item/VMJ_2021_23_4_a9/