Bounded orthomorphisms between locally solid vector lattices
Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 4, pp. 89-95 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The main aim of the present note is to consider bounded orthomorphisms between locally solid vector lattices. We establish a version of the remarkable Zannen theorem regarding equivalence between orthomorphisms and the underlying vector lattice for the case of all bounded orthomomorphisms. Furthermore, we investigate topological and ordered structures for these classes of orthomorphisms, as well. In particular, we show that each class of bounded orthomorphisms possesses the Levi or the $AM$-properties if and only if so is the underlying locally solid vector lattice. Moreover, we establish a similar result for the Lebesgue property, as well.
@article{VMJ_2021_23_4_a9,
     author = {R. Sabbagh and O. Zabeti},
     title = {Bounded orthomorphisms between locally solid vector lattices},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {89--95},
     year = {2021},
     volume = {23},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2021_23_4_a9/}
}
TY  - JOUR
AU  - R. Sabbagh
AU  - O. Zabeti
TI  - Bounded orthomorphisms between locally solid vector lattices
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2021
SP  - 89
EP  - 95
VL  - 23
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMJ_2021_23_4_a9/
LA  - en
ID  - VMJ_2021_23_4_a9
ER  - 
%0 Journal Article
%A R. Sabbagh
%A O. Zabeti
%T Bounded orthomorphisms between locally solid vector lattices
%J Vladikavkazskij matematičeskij žurnal
%D 2021
%P 89-95
%V 23
%N 4
%U http://geodesic.mathdoc.fr/item/VMJ_2021_23_4_a9/
%G en
%F VMJ_2021_23_4_a9
R. Sabbagh; O. Zabeti. Bounded orthomorphisms between locally solid vector lattices. Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 4, pp. 89-95. http://geodesic.mathdoc.fr/item/VMJ_2021_23_4_a9/

[1] Aliprantis C. D., Burkinshaw O., Positive Operators, Springer, 2006 | MR | Zbl

[2] Erkursun-Ozcan N., Anil Gezer N., Zabeti O., “Spaces of $u\tau$-Dunford-Pettis and $u\tau$-Compact Operators on Locally Solid Vector Lattices”, Matematicki Vesnik, 71:4 (2019), 351–358 | MR | Zbl

[3] Zabeti O., “AM-Spaces from a Locally Solid Vector Lattice Point of View with Applications”, Bulletin. Iran. Math. Society, 47 (2021), 1559–1569 | DOI | MR | Zbl

[4] Aliprantis C. D., Burkinshaw O., Locally Solid Riesz Spaces with Applications to Economics, Mathematical Surveys and Monographs, 105, American Mathematical Society, Providence, 2003 | DOI | MR | Zbl

[5] Zabeti O., “The Banach–Saks Property from a Locally Solid Vector Lattice Point of View”, Positivity, 25 (2021), 1579–1583 | DOI | MR | Zbl

[6] Johnson D. G., “A Structure Theory for a Class Of Lattice-Ordered Rings”, Acta Mathematica, 104:3–4 (1960), 163–215 | DOI | MR | Zbl

[7] Mirzavaziri M., Zabeti O., “Topological Rings of Bounded and Compact Group Homomorphisms on a Topological Ring”, J. Adv. Res. Pure Math., 3:2 (2011), 100–106 | DOI | MR

[8] Zaanen A. C., “Examples of Orthomorphisms”, J. Approx. Theory, 13 (1975), 192–204 | DOI | MR | Zbl

[9] Hejazian S., Mirzavaziri M., Zabeti O., “Bounded Operators on Topological Vector Spaces and their Spectral Radii”, Filomat, 26:6 (2012), 1283–1290 | DOI | MR | Zbl

[10] Troitsky V. G., “Spectral Radii of Bounded Operators on Topological Vector Spaces”, Panamer. Math. J., 11:3 (2001), 1–35 | MR | Zbl