Existence of weakly periodic Gibbs measures for the Ising model on the Cayley tree of order three
Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 4, pp. 77-88 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

One of the main problems of the Ising model Hamiltonian is to describe all limiting Gibbs measures corresponding to this Hamiltonian. It is well known that for the Ising model, such measures form a nonempty convex compact subset in the set of all probability measures. The problem of completely describing the elements of this set is far from being completely solved. For the Ising model on the Cayley tree of order three translation-invariant and periodic Gibbs measures are studied, but weakly periodic Gibbs measures have not been studied yet. Therefore, it is interesting to study weakly periodic Gibbs measures which is non-periodic. The paper is devoted to the study of weakly periodic Gibbs measures for the Ising model on a Cayley tree of order three ($k = 3$). It is known that the weakly periodic Gibbs measure for the Ising model depends on the choice of the normal subgroup of the group representation of the Cayley tree. In this paper, we consider one normal subgroup of index four of the group representation of a Cayley tree. With respect to this normal subgroup, the existence of weakly periodic Gibbs measures for the Ising model on a Cayley tree of order three is proved. More precisely, the fact that under some conditions on parameters the existence of at least four weakly periodic (non-periodic) Gibbs measures is proved.
@article{VMJ_2021_23_4_a8,
     author = {M. M. Rahmatullaev and Zh. D. Dekhkonov},
     title = {Existence of weakly periodic {Gibbs} measures for the {Ising} model on the {Cayley} tree of order three},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {77--88},
     year = {2021},
     volume = {23},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2021_23_4_a8/}
}
TY  - JOUR
AU  - M. M. Rahmatullaev
AU  - Zh. D. Dekhkonov
TI  - Existence of weakly periodic Gibbs measures for the Ising model on the Cayley tree of order three
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2021
SP  - 77
EP  - 88
VL  - 23
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMJ_2021_23_4_a8/
LA  - ru
ID  - VMJ_2021_23_4_a8
ER  - 
%0 Journal Article
%A M. M. Rahmatullaev
%A Zh. D. Dekhkonov
%T Existence of weakly periodic Gibbs measures for the Ising model on the Cayley tree of order three
%J Vladikavkazskij matematičeskij žurnal
%D 2021
%P 77-88
%V 23
%N 4
%U http://geodesic.mathdoc.fr/item/VMJ_2021_23_4_a8/
%G ru
%F VMJ_2021_23_4_a8
M. M. Rahmatullaev; Zh. D. Dekhkonov. Existence of weakly periodic Gibbs measures for the Ising model on the Cayley tree of order three. Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 4, pp. 77-88. http://geodesic.mathdoc.fr/item/VMJ_2021_23_4_a8/

[1] Rozikov U. A., Gibbs Measures on Cayley Trees, World Scintific, 2013, 385 pp. | DOI | MR | Zbl

[2] Blekher P. M., Ganikhodzhaev N. N., “O chistykh fazakh modeli Izinga na reshetkakh Bete”, Teoriya veroyatn. i ee primen., 35:2 (1990), 220–230 | MR | Zbl

[3] Spitzer F., “Markov random field on infinite tree”, Ann. Probab., 3:3 (1975), 387–398 | DOI | MR | Zbl

[4] Zachary S., “Countable state space Markov random fields and Markov chains on trees”, Ann. Probab., 11:4 (1983), 894–903 | DOI | MR | Zbl

[5] Rozikov U. A., “Struktury razbienii na klassy smezhnosti gruppovogo predstavleniya dereva Keli po normalnym delitelyam konechnogo indeksa i ikh primeneniya dlya opisaniya periodicheskikh raspredelenii Gibbsa”, Teor. i mat. fizika, 112:1 (1997), 170–175 | DOI | MR | Zbl

[6] Rozikov U. A., “Postroenie neschetnogo chisla predelnykh gibbsovskikh mer neodnorodnoi modeli Izinga”, Teor. i mat. fizika, 118:1 (1999), 95–104 | DOI | MR | Zbl

[7] Rozikov U. A., Suhov Yu. M., “Gibbs measures for SOS model on a Cayley tree”, Inf. Dim. Anal. Quant. Prob. Rel. Topics, 9:3 (2006), 471–488 | DOI | MR | Zbl

[8] Martin J. B., Rozikov U. A., Suhov Yu. M., “A three state hard-core model on a Cayley tree”, J. Nonlinear Math. Phys., 12:3 (2005), 432–448 | DOI | MR | Zbl

[9] Rozikov U. A., “Opisanie predelnykh gibbsovskikh mer dlya $\lambda$-modelei na reshetkakh Bete”, Sib. mat. zhurn., 39:2 (1998), 427–435 | MR | Zbl

[10] Mukhamedov F. M., Rozikov U. A., “On Gibbs measures of models with competing ternary and binary interactions and corresponding von Neumann algebras”, J. Stat. Phys., 114:3/4 (2004), 825–848 | DOI | MR | Zbl

[11] Gandolfo D., Ruiz J., Shlosman S., “A manifold of pure Gibbs states of the Ising model on a Cayley tree”, J. Stat. Phys., 148:6 (2012), 999–1005 | DOI | MR | Zbl

[12] Malyshev V. A, Minlos R. A., Gibbsovskie sluchainye polya, Nauka, M., 1985, 288 pp. | MR

[13] Ryuel D., Statisticheskaya mekhanika, Mir, M., 1971, 368 pp.

[14] de Jongh L. J., Miedema A. R., “Experiments on simple magnetic model systems”, Adv. Phys., 23:1 (1974), 1–260 | DOI

[15] Feiman R., Statisticheskaya mekhanika, Mir, M., 1978, 412 pp.

[16] Rozikov U. A., Rakhmatullaev M. M., “Opisanie slabo periodicheskikh mer Gibbsa modeli Izinga na dereve Keli”, Teor. i mat. fizika, 156:2 (2008), 292–302 | DOI | MR | Zbl

[17] Rakhmatullaev M. M., “O novykh slabo periodicheskikh gibbsovskikh merakh modeli Izinga na dereve Keli”, Izv. vuzov. Mat., 2015, no. 11, 54–63 | Zbl

[18] Rahmatullaev M. M., “On new weakly periodic Gibbs measures of the Ising model on the Cayley tree of order $k\leq5$”, J. Phys. Conf. Ser., 697 (2016) | DOI | MR

[19] Rakhmatullaev M. M., “O slabo periodicheskikh merakh Gibbsa modeli Izinga s vneshnim polem na dereve Keli”, Teor. i mat. fizika, 183:3 (2015), 434–440 | DOI | MR | Zbl

[20] Rakhmatullaev M. M., “Suschestvovanie slabo periodicheskikh mer Gibbsa dlya modeli Pottsa na dereve Keli”, Teor. i mat. fizika, 180:3 (2014), 307–317 | DOI | Zbl

[21] Rakhmatullaev M. M., “Slabo periodicheskikh mer Gibbsa dlya ferromagnitnoi modeli Pottsa na dereve Keli”, Sib. mat. zhurn., 56:5 (2015), 1163–1170 | DOI | MR | Zbl

[22] Normatov E. P., Rozikov U. A., “Opisanie garmonicheskikh funktsii s primeneniem svoistv gruppovogo predstavleniya dereva Keli”, Mat. zametki, 79:3 (2006), 434–443 | DOI | MR | Zbl

[23] Rakhmatullaev M. M., Dekhkonov Zh. D., “Slabo periodicheskie mery Gibbsa dlya modeli Izinga na dereve Keli poryadka $k=2$”, Teor. i mat. fizika, 206:2 (2021), 210–224 | DOI | MR | Zbl