@article{VMJ_2021_23_4_a7,
author = {A. A. Makhnev and V. V. Bitkina and A. K. Gutnova},
title = {Distance-regular graphs with intersection arrays $\{7,6,6;1,1,2\}$ and $\{42,30,2;1,10,36\}$ do not exist},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {68--76},
year = {2021},
volume = {23},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2021_23_4_a7/}
}
TY - JOUR
AU - A. A. Makhnev
AU - V. V. Bitkina
AU - A. K. Gutnova
TI - Distance-regular graphs with intersection arrays $\{7,6,6;1,1,2\}$ and $\{42,30,2;1,10,36\}$ do not exist
JO - Vladikavkazskij matematičeskij žurnal
PY - 2021
SP - 68
EP - 76
VL - 23
IS - 4
UR - http://geodesic.mathdoc.fr/item/VMJ_2021_23_4_a7/
LA - ru
ID - VMJ_2021_23_4_a7
ER -
%0 Journal Article
%A A. A. Makhnev
%A V. V. Bitkina
%A A. K. Gutnova
%T Distance-regular graphs with intersection arrays $\{7,6,6;1,1,2\}$ and $\{42,30,2;1,10,36\}$ do not exist
%J Vladikavkazskij matematičeskij žurnal
%D 2021
%P 68-76
%V 23
%N 4
%U http://geodesic.mathdoc.fr/item/VMJ_2021_23_4_a7/
%G ru
%F VMJ_2021_23_4_a7
A. A. Makhnev; V. V. Bitkina; A. K. Gutnova. Distance-regular graphs with intersection arrays $\{7,6,6;1,1,2\}$ and $\{42,30,2;1,10,36\}$ do not exist. Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 4, pp. 68-76. http://geodesic.mathdoc.fr/item/VMJ_2021_23_4_a7/
[1] Brouwer A. E., Cohen A. M., Neumaier A., Distance-Regular Graphs, Springer-Verlag, Berlin–Heidelberg–New York, 1989 | MR | Zbl
[2] Fon Der Flaas D., “There exists no distance-regular graph with intersection array $\{5,4,3;1,1,2\}$”, Europ. J. Comb., 14:5 (1993), 409–412 | DOI | MR | Zbl
[3] Nirova M. S., “O distantsionno regulyarnykh grafakh s $\theta_2=-1$”, Tr. In-ta mat. i mekh. UrO RAN, 24, no. 2, 2018, 215–228 | DOI | MR
[4] Coolsaet K., Jurishich A., “Using equality in the Krein conditions to prove nonexistence of certain distance-regular graphs”, J. Comb. Theory. Ser. A, 115:6 (2008), 1086–1095 | DOI | MR | Zbl
[5] Makhnev A. A., Nirova M. S., “Distantsionno regulyarnye grafy Shilla s $b_2=c_2$”, Mat. zametki, 103:5 (2018), 730–744 | DOI | MR | Zbl