Distance-regular graphs with intersection arrays $\{7,6,6;1,1,2\}$ and $\{42,30,2;1,10,36\}$ do not exist
Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 4, pp. 68-76 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\Gamma$ be a distance-regular graph of diameter $3$ without triangles, $u$ be a vertex of the graph $\Gamma$, $\Delta^i =\Gamma_i (u)$ and $\Sigma^i = \Delta^i_{2,3}$. Then $\Sigma^i$ is a regular graph without $3$-cocliques of degree $k'=k_i-a_i-1$ on $v' = k_i$ vertices. Note that for non-adjacent vertices $y, z \in \Sigma^i$ we have $\Sigma^i = \{y, z\} \cup \Sigma^i (y) \cup \Sigma^i (z)$. Therefore, for $\mu'= |\Sigma^i (y) \cap \Sigma^i (z)| $ we have the equality $v'= 2k' + 2-\mu'$. Hence the graph $\Sigma$ is coedge regular with parameters $(v', k', \mu')$. It is proved in the paper that a distance-regular graph with intersection array $\{7,6,6; 1,1,2 \}$ does not exist. In the article by M. S. Nirova "On distance-regular graphs with $\theta_2 = -1$" is proved that if there is a strongly regular graph with parameters $(176,49,12,14)$, in which the neighborhoods of the vertices are $7 \times 7$ -lattices, then there also exists a distance-regular graph with intersection array $\{7,6,6; 1,1,2\}$. M. P. Golubyatnikov noticed that for a distance-regular graph $\Gamma$ with intersection array $\{7,6,6; 1,1,2\}$ graph $\Gamma_2$ is distance regular with intersection array $\{42,30,2; 1,10,36\}$. With this result and calculations of the triple intersection numbers, it is proved that the distance-regular graphs with intersection arrays $\{7,6,6; 1,1,2\}$ and $\{42,30,2; 1,10,36\}$ do not exist.
@article{VMJ_2021_23_4_a7,
     author = {A. A. Makhnev and V. V. Bitkina and A. K. Gutnova},
     title = {Distance-regular graphs with intersection arrays $\{7,6,6;1,1,2\}$ and $\{42,30,2;1,10,36\}$ do not exist},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {68--76},
     year = {2021},
     volume = {23},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2021_23_4_a7/}
}
TY  - JOUR
AU  - A. A. Makhnev
AU  - V. V. Bitkina
AU  - A. K. Gutnova
TI  - Distance-regular graphs with intersection arrays $\{7,6,6;1,1,2\}$ and $\{42,30,2;1,10,36\}$ do not exist
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2021
SP  - 68
EP  - 76
VL  - 23
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMJ_2021_23_4_a7/
LA  - ru
ID  - VMJ_2021_23_4_a7
ER  - 
%0 Journal Article
%A A. A. Makhnev
%A V. V. Bitkina
%A A. K. Gutnova
%T Distance-regular graphs with intersection arrays $\{7,6,6;1,1,2\}$ and $\{42,30,2;1,10,36\}$ do not exist
%J Vladikavkazskij matematičeskij žurnal
%D 2021
%P 68-76
%V 23
%N 4
%U http://geodesic.mathdoc.fr/item/VMJ_2021_23_4_a7/
%G ru
%F VMJ_2021_23_4_a7
A. A. Makhnev; V. V. Bitkina; A. K. Gutnova. Distance-regular graphs with intersection arrays $\{7,6,6;1,1,2\}$ and $\{42,30,2;1,10,36\}$ do not exist. Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 4, pp. 68-76. http://geodesic.mathdoc.fr/item/VMJ_2021_23_4_a7/

[1] Brouwer A. E., Cohen A. M., Neumaier A., Distance-Regular Graphs, Springer-Verlag, Berlin–Heidelberg–New York, 1989 | MR | Zbl

[2] Fon Der Flaas D., “There exists no distance-regular graph with intersection array $\{5,4,3;1,1,2\}$”, Europ. J. Comb., 14:5 (1993), 409–412 | DOI | MR | Zbl

[3] Nirova M. S., “O distantsionno regulyarnykh grafakh s $\theta_2=-1$”, Tr. In-ta mat. i mekh. UrO RAN, 24, no. 2, 2018, 215–228 | DOI | MR

[4] Coolsaet K., Jurishich A., “Using equality in the Krein conditions to prove nonexistence of certain distance-regular graphs”, J. Comb. Theory. Ser. A, 115:6 (2008), 1086–1095 | DOI | MR | Zbl

[5] Makhnev A. A., Nirova M. S., “Distantsionno regulyarnye grafy Shilla s $b_2=c_2$”, Mat. zametki, 103:5 (2018), 730–744 | DOI | MR | Zbl