@article{VMJ_2021_23_4_a6,
author = {R. Kazemi and M. R. Miri and G. R. Mohtashami Borzadaran},
title = {Topological unified $(r, s)$-entropy of continuous maps on quasi-metric spaces},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {56--67},
year = {2021},
volume = {23},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2021_23_4_a6/}
}
TY - JOUR AU - R. Kazemi AU - M. R. Miri AU - G. R. Mohtashami Borzadaran TI - Topological unified $(r, s)$-entropy of continuous maps on quasi-metric spaces JO - Vladikavkazskij matematičeskij žurnal PY - 2021 SP - 56 EP - 67 VL - 23 IS - 4 UR - http://geodesic.mathdoc.fr/item/VMJ_2021_23_4_a6/ LA - en ID - VMJ_2021_23_4_a6 ER -
%0 Journal Article %A R. Kazemi %A M. R. Miri %A G. R. Mohtashami Borzadaran %T Topological unified $(r, s)$-entropy of continuous maps on quasi-metric spaces %J Vladikavkazskij matematičeskij žurnal %D 2021 %P 56-67 %V 23 %N 4 %U http://geodesic.mathdoc.fr/item/VMJ_2021_23_4_a6/ %G en %F VMJ_2021_23_4_a6
R. Kazemi; M. R. Miri; G. R. Mohtashami Borzadaran. Topological unified $(r, s)$-entropy of continuous maps on quasi-metric spaces. Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 4, pp. 56-67. http://geodesic.mathdoc.fr/item/VMJ_2021_23_4_a6/
[1] Shannon C. E., “A Mathematical Theory of Communication”, ACM SIGMOBILE Mobile Computing and Communications Review, 2001, no. 1, 3–55 | DOI
[2] Rényi A., On Measures of Entropy and Information, Hungarian Academy of Sciences, Budapest, Hungary, 1961
[3] Tsallis C., “Possible Generalization of Boltzmann–Gibbs Statistics”, Journal of Statistical Physics, 52:1–2 (1988), 479–487 | DOI | MR | Zbl
[4] Rathie P. N., Taneja I. J., “Unified $(r, s)$-Entropy and its Bivariate Measures”, Information Sciences, 54:1–2 (1991), 23–39 | DOI | MR | Zbl
[5] Rastegin A. E., “Some General Properties of Unified Entropies”, Journal of Statistical Physics, 143:6 (2011) | DOI | MR | Zbl
[6] Rastegin A. E., “On Unified-Entropy Characterization of Quantum Channels”, Journal of Physics A: Mathematical and Theoretical, 45:4 (2011), 45302 | DOI | MR
[7] Kolmogorov A. N., “A New Metric Invariant of Transient Dynamical Systems and Automorphisms in Lebesgue Spaces”, Dokl. Akad. Nauk SSSR, 119:5 (1958), 861–864 | MR | Zbl
[8] Sinai Y. G., “On the Notion of Entropy of a Dynamical System”, Doklady of Russian Academy of Sciences, 124:3 (1959), 768–771 | MR | Zbl
[9] Adle R., Konheim A., McAndrew M. H., “Topological Entropy”, Transactions of the American Mathematical Society, 114:2 (1965), 309–319 | DOI | MR | Zbl
[10] Bowen R., “Entropy for Group Endomorphisms and Homogeneous Spaces”, Transactions of the American Mathematical Society, 153 (1971), 401–414 | DOI | MR | Zbl
[11] Dinaburg E. I., “A Correlation Between Topological Entropy and Metric Entropy”, Dokl. Akad. Nauk SSSR, 190:1 (1970), 19–22 | MR | Zbl
[12] Kazemi R., Miri M. R., Mohtashami Borzadaran G. M., “Topological Unified $(r, s)$-Entropy”, Physica A: Statistical Mechanics and its Applications, 541 (2020), 123657 | DOI | MR | Zbl
[13] Stolenberg R. A., “A Completion for a Quasi Uniform Space”, Proc. Amer. Math. Soc., 18 (1967), 864–867 | DOI | MR
[14] Stoltenberg R. A., “On Quasi-Metric Spaces”, Duke Math. J., 36 (1969), 65–71 | DOI | MR | Zbl
[15] Sayyari Y., Molaei M., Moghayer S. M., “Entropy of Continuous Maps on Quasi-Metric Spaces”, Journal of Advanced Research in Dynamical and Control Systems, 7:4 (2015), 1–10 | MR
[16] Havrda J., Charvat F., “Quantification Method of Classification Processes. Concept of Structural $a$-Entropy”, Kybernetika, 3:1 (1967), 30–35 | MR | Zbl
[17] Sharma B. D., Mittal D. P., “New non-Additive Measures of Entropy for 280 Discrete Probability Distributions”, J. Math. Sci., 10 (1975), 28–40 | DOI | MR