Topological unified $(r, s)$-entropy of continuous maps on quasi-metric spaces
Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 4, pp. 56-67 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The category of metric spaces is a subcategory of quasi-metric spaces. It is shown that the entropy of a map when symmetric properties is included is greater or equal to the entropy in the case that the symmetric property of the space is not considered. The topological entropy and Shannon entropy have similar properties such as nonnegativity, subadditivity and conditioning reduces entropy. In other words, topological entropy is supposed as the extension of classical entropy in dynamical systems. In the recent decade, different extensions of Shannon entropy have been introduced. One of them which generalizes many classical entropies is unified $(r,s)$-entropy. In this paper, we extend the notion of unified $(r, s)$-entropy for the continuous maps of a quasi-metric space via spanning and separated sets. Moreover, we survey unified $(r, s)$-entropy of a map for two metric spaces that are associated with a given quasi-metric space and compare unified $(r, s)$-entropy of a map of a given quasi-metric space and the maps of its associated metric spaces. Finally we define Tsallis topological entropy for the continuous map on a quasi-metric space via Bowen's definition and analyze some properties such as chain rule.
@article{VMJ_2021_23_4_a6,
     author = {R. Kazemi and M. R. Miri and G. R. Mohtashami Borzadaran},
     title = {Topological unified $(r, s)$-entropy of continuous maps on quasi-metric spaces},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {56--67},
     year = {2021},
     volume = {23},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2021_23_4_a6/}
}
TY  - JOUR
AU  - R. Kazemi
AU  - M. R. Miri
AU  - G. R. Mohtashami Borzadaran
TI  - Topological unified $(r, s)$-entropy of continuous maps on quasi-metric spaces
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2021
SP  - 56
EP  - 67
VL  - 23
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMJ_2021_23_4_a6/
LA  - en
ID  - VMJ_2021_23_4_a6
ER  - 
%0 Journal Article
%A R. Kazemi
%A M. R. Miri
%A G. R. Mohtashami Borzadaran
%T Topological unified $(r, s)$-entropy of continuous maps on quasi-metric spaces
%J Vladikavkazskij matematičeskij žurnal
%D 2021
%P 56-67
%V 23
%N 4
%U http://geodesic.mathdoc.fr/item/VMJ_2021_23_4_a6/
%G en
%F VMJ_2021_23_4_a6
R. Kazemi; M. R. Miri; G. R. Mohtashami Borzadaran. Topological unified $(r, s)$-entropy of continuous maps on quasi-metric spaces. Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 4, pp. 56-67. http://geodesic.mathdoc.fr/item/VMJ_2021_23_4_a6/

[1] Shannon C. E., “A Mathematical Theory of Communication”, ACM SIGMOBILE Mobile Computing and Communications Review, 2001, no. 1, 3–55 | DOI

[2] Rényi A., On Measures of Entropy and Information, Hungarian Academy of Sciences, Budapest, Hungary, 1961

[3] Tsallis C., “Possible Generalization of Boltzmann–Gibbs Statistics”, Journal of Statistical Physics, 52:1–2 (1988), 479–487 | DOI | MR | Zbl

[4] Rathie P. N., Taneja I. J., “Unified $(r, s)$-Entropy and its Bivariate Measures”, Information Sciences, 54:1–2 (1991), 23–39 | DOI | MR | Zbl

[5] Rastegin A. E., “Some General Properties of Unified Entropies”, Journal of Statistical Physics, 143:6 (2011) | DOI | MR | Zbl

[6] Rastegin A. E., “On Unified-Entropy Characterization of Quantum Channels”, Journal of Physics A: Mathematical and Theoretical, 45:4 (2011), 45302 | DOI | MR

[7] Kolmogorov A. N., “A New Metric Invariant of Transient Dynamical Systems and Automorphisms in Lebesgue Spaces”, Dokl. Akad. Nauk SSSR, 119:5 (1958), 861–864 | MR | Zbl

[8] Sinai Y. G., “On the Notion of Entropy of a Dynamical System”, Doklady of Russian Academy of Sciences, 124:3 (1959), 768–771 | MR | Zbl

[9] Adle R., Konheim A., McAndrew M. H., “Topological Entropy”, Transactions of the American Mathematical Society, 114:2 (1965), 309–319 | DOI | MR | Zbl

[10] Bowen R., “Entropy for Group Endomorphisms and Homogeneous Spaces”, Transactions of the American Mathematical Society, 153 (1971), 401–414 | DOI | MR | Zbl

[11] Dinaburg E. I., “A Correlation Between Topological Entropy and Metric Entropy”, Dokl. Akad. Nauk SSSR, 190:1 (1970), 19–22 | MR | Zbl

[12] Kazemi R., Miri M. R., Mohtashami Borzadaran G. M., “Topological Unified $(r, s)$-Entropy”, Physica A: Statistical Mechanics and its Applications, 541 (2020), 123657 | DOI | MR | Zbl

[13] Stolenberg R. A., “A Completion for a Quasi Uniform Space”, Proc. Amer. Math. Soc., 18 (1967), 864–867 | DOI | MR

[14] Stoltenberg R. A., “On Quasi-Metric Spaces”, Duke Math. J., 36 (1969), 65–71 | DOI | MR | Zbl

[15] Sayyari Y., Molaei M., Moghayer S. M., “Entropy of Continuous Maps on Quasi-Metric Spaces”, Journal of Advanced Research in Dynamical and Control Systems, 7:4 (2015), 1–10 | MR

[16] Havrda J., Charvat F., “Quantification Method of Classification Processes. Concept of Structural $a$-Entropy”, Kybernetika, 3:1 (1967), 30–35 | MR | Zbl

[17] Sharma B. D., Mittal D. P., “New non-Additive Measures of Entropy for 280 Discrete Probability Distributions”, J. Math. Sci., 10 (1975), 28–40 | DOI | MR