About subgroups rich in transvections
Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 4, pp. 50-55 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A subgroup $H$ of the full linear group $G=GL(n,R)$ of order $n$ over the ring $R$ is said to be rich in transvections if it contains elementary transvections $t_{ij}(\alpha) = e + \alpha e_{ij}$ at all positions $(i, j), \ i\neq j$ (for some $\alpha\in R$, $\alpha\neq 0$). This work is devoted to some questions associated with subgroups rich in transvections. It is known that if a subgroup $H$ contains a permutation matrix corresponding to a cycle of length $n$ and an elementary transvection of position $(i, j)$ such that $(i-j)$ and $n$ are mutually simple, then the subgroup $H$ is rich in transvections. In this note, it is proved that the condition of mutual simplicity of $(i-j)$ and $n$ is essential. We show that for $n=2k$, the cycle $\pi=(1\ 2\ \ldots n)$ and the elementary transvection $t_{31}(\alpha)$, $\alpha\neq 0$, the group $\langle (\pi), t_{31}(\alpha)\rangle$ generated by the elementary transvection $t_{31}(\alpha)$ and the permutation matrix (cycle) $(\pi)$ is not a subgroup rich in transvections.
@article{VMJ_2021_23_4_a5,
     author = {N. A. Dzhusoeva and S. S. Ikaev and V. A. Koibaev},
     title = {About subgroups rich in transvections},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {50--55},
     year = {2021},
     volume = {23},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2021_23_4_a5/}
}
TY  - JOUR
AU  - N. A. Dzhusoeva
AU  - S. S. Ikaev
AU  - V. A. Koibaev
TI  - About subgroups rich in transvections
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2021
SP  - 50
EP  - 55
VL  - 23
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMJ_2021_23_4_a5/
LA  - ru
ID  - VMJ_2021_23_4_a5
ER  - 
%0 Journal Article
%A N. A. Dzhusoeva
%A S. S. Ikaev
%A V. A. Koibaev
%T About subgroups rich in transvections
%J Vladikavkazskij matematičeskij žurnal
%D 2021
%P 50-55
%V 23
%N 4
%U http://geodesic.mathdoc.fr/item/VMJ_2021_23_4_a5/
%G ru
%F VMJ_2021_23_4_a5
N. A. Dzhusoeva; S. S. Ikaev; V. A. Koibaev. About subgroups rich in transvections. Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 4, pp. 50-55. http://geodesic.mathdoc.fr/item/VMJ_2021_23_4_a5/

[1] Borevich Z. I., “Subgroups of Linear Groups Rich in Transvections”, Journal of Soviet Mathematics, 37 (1987), 928–934 | DOI | Zbl | Zbl

[2] Dryaeva R. Y., Koibaev V. A., “Elementary Transvections in the Overgroups of a Non-Split Maximal Torus”, Vladikavkaz Math. J., 17:4, 11–17 | DOI | MR | Zbl

[3] Faddeev D. K., Faddeeva V. N., Computational Methods of Linear Algebra, Lan, St. Petersburg, 2009 | MR

[4] Borevich Z. I., “A Description of the Subgroups of the Complete Linear Group that Contain the Group of Diagonal Matrices”, Journal of Soviet Mathematics, 17 (1981), 1718–1730 | DOI | Zbl | Zbl