A pointwise condition for the absolute continuity of a function of one variable and its applications
Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 4, pp. 41-49 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An absolutely continuous function in calculus is precisely such a function that, within the framework of Lebesgue integration, can be restored from its derivative, that is, the Newton–Leibniz theorem on the relationship between integration and differentiation is fulfilled for it. An equivalent definition is that the the sum of the moduli of the increments of the function with respect to arbitrary pair-wise disjoint intervals is less than any positive number if the sum of the lengths of the intervals is small enough. Certain sufficient conditions for absolute continuity are known, for example, the Banach–Zaretsky theorem. In this paper we prove a new sufficient condition for the absolute continuity of a function of one variable and give some of its applications to problems in the theory of function spaces. The proved condition makes it possible to significantly simplify the proof of the theorems on the pointwise description of functions of the Sobolev classes defined on Euclidean spaces and Сarnot groups.
@article{VMJ_2021_23_4_a4,
     author = {S. K. Vodopyanov},
     title = {A pointwise condition for the absolute continuity of a function of one variable and its applications},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {41--49},
     year = {2021},
     volume = {23},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2021_23_4_a4/}
}
TY  - JOUR
AU  - S. K. Vodopyanov
TI  - A pointwise condition for the absolute continuity of a function of one variable and its applications
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2021
SP  - 41
EP  - 49
VL  - 23
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMJ_2021_23_4_a4/
LA  - en
ID  - VMJ_2021_23_4_a4
ER  - 
%0 Journal Article
%A S. K. Vodopyanov
%T A pointwise condition for the absolute continuity of a function of one variable and its applications
%J Vladikavkazskij matematičeskij žurnal
%D 2021
%P 41-49
%V 23
%N 4
%U http://geodesic.mathdoc.fr/item/VMJ_2021_23_4_a4/
%G en
%F VMJ_2021_23_4_a4
S. K. Vodopyanov. A pointwise condition for the absolute continuity of a function of one variable and its applications. Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 4, pp. 41-49. http://geodesic.mathdoc.fr/item/VMJ_2021_23_4_a4/

[1] Frederick Ungar Publ. Co., New York, 1955 | MR

[2] Reshetnyak Yu. G., Space Mappings with Bounded Distortion, Amer. Math. Soc., Providence, 1989 | MR | Zbl

[3] Vodop'yanov S. K., “Regularity of Mappings Inverse to Sobolev Mappings”, Sbornik: Mathematics, 203:10 (2012), 1–28 | DOI | MR

[4] Hajłasz P., “Sobolev Spaces on an Arbitrary Metric Space”, Potential Analysis, 5:4 (1996), 403–415 | MR | Zbl

[5] Vodopyanov S. K., “Monotone Functions and Quasiconformal Mappings on Carnot groups”, Siberian Mathematical Journal, 37:6 (1996), 1269–1295 | DOI | MR | Zbl

[6] Bojarski B., “Remarks on Some Geometric Properties of Sobolev Mappings”, Functional Analysis Related Topics (Sapporo, 1990), World Sci. Publ., River Edge, NJ, 1991, 65–76 | MR | Zbl

[7] Jain P., Molchanova A., Singh M., Vodopyanov S., “On Grand Sobolev Spaces and Pointwise Description of Banach Function Spaces”, Nonlinear Analysis, Theory, Methods and Applications, 202:1 (2021), 1–17 | DOI | MR

[8] Bonfiglioli A., Lanconelli E., Uguzzoni F., Stratified Lie Groups and Potential Theory for their Sub-Laplacians, Springer-Verlag, Berlin–Heidelberg, 2007 | MR | Zbl