Pluriharmonic definable functions in some $o$-minimal expansions of the real field
Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 4, pp. 35-40 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we first try to solve the following problem: If a pluriharmonic function $f$ is definable in an arbitrary $o$-minimal expansion of the structure of the real field $\overline{\mathbb{R}}:=(\mathbb{R},+,-,.,0,1,<)$, is this function locally the real part of a holomorphic function which is definable in the same expansion? In Proposition 2.1 below, we prove that this problem has a positive answer if the Weierstrass division theorem holds true for the system of the rings of real analytic definable germs at the origin of $\mathbb{R}^n$. We obtain the same answer for an $o$-minimal expansion of the real field which is pfaffian closed (Proposition 2.6) for the harmonic functions. In the last section, we are going to show that the Weierstrass division theorem does not hold true for the rings of germs of real analytic functions at $0\in\mathbb{R}^n$ which are definable in the o-minimal structure $(\overline{\mathbb{R}}, x^{\alpha_1},\ldots,x^{\alpha_p})$ where $\alpha_1,\ldots,\alpha_p$ are irrational real numbers.
@article{VMJ_2021_23_4_a3,
     author = {M. Berraho},
     title = {Pluriharmonic definable functions in some $o$-minimal expansions of the real field},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {35--40},
     year = {2021},
     volume = {23},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2021_23_4_a3/}
}
TY  - JOUR
AU  - M. Berraho
TI  - Pluriharmonic definable functions in some $o$-minimal expansions of the real field
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2021
SP  - 35
EP  - 40
VL  - 23
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMJ_2021_23_4_a3/
LA  - en
ID  - VMJ_2021_23_4_a3
ER  - 
%0 Journal Article
%A M. Berraho
%T Pluriharmonic definable functions in some $o$-minimal expansions of the real field
%J Vladikavkazskij matematičeskij žurnal
%D 2021
%P 35-40
%V 23
%N 4
%U http://geodesic.mathdoc.fr/item/VMJ_2021_23_4_a3/
%G en
%F VMJ_2021_23_4_a3
M. Berraho. Pluriharmonic definable functions in some $o$-minimal expansions of the real field. Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 4, pp. 35-40. http://geodesic.mathdoc.fr/item/VMJ_2021_23_4_a3/

[1] Krantz S. G., Handbook of Complex Variables, Birkhauser Boston Inc., Boston, 1999 | MR | Zbl

[2] Gauthier P. M., Several Complex Variables, March 14, 2006

[3] Speissegger P., “The Pfaffian Closure of an o-Minimal Structure”, J. Reine Angew. Math., 508 (1999), 189–211 | DOI | MR | Zbl

[4] Kaiser T., “$R$-Analytic Functions”, Archive for Mathematical Logic, 55:5–6 (2016), 605–623 | DOI | MR | Zbl

[5] Gunning R., Rossi H., Analytic Functions of Several Complex Variables, Reprint of the 1965 original, AMS Chelsea Publishing, Providence, RI, 2009 | MR | Zbl

[6] Bianconi R., “Undefinability Results in O-Minimal Expansions of the Real Numbers”, Annals of Pure and Applied Logic, 134:1 (2005), 43–51 | DOI | MR | Zbl

[7] Ahlfors L. V., Complex Analysis, 3 ed., McGraw-Hill, New York, 1979 | MR | Zbl

[8] van den Dries L., Tame Topology and o-Minimal Structures, London Mathematical Society Lecture Note Series, 248, Cambridge University Press, Cambridge, 1998 | DOI | MR | Zbl

[9] Miller C., “Expansions of the Real Field with Power Functions”, Annals of Pure and Applied Logic, 68:1 (1994), 79–94 | DOI | MR | Zbl