@article{VMJ_2021_23_4_a3,
author = {M. Berraho},
title = {Pluriharmonic definable functions in some $o$-minimal expansions of the real field},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {35--40},
year = {2021},
volume = {23},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2021_23_4_a3/}
}
M. Berraho. Pluriharmonic definable functions in some $o$-minimal expansions of the real field. Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 4, pp. 35-40. http://geodesic.mathdoc.fr/item/VMJ_2021_23_4_a3/
[1] Krantz S. G., Handbook of Complex Variables, Birkhauser Boston Inc., Boston, 1999 | MR | Zbl
[2] Gauthier P. M., Several Complex Variables, March 14, 2006
[3] Speissegger P., “The Pfaffian Closure of an o-Minimal Structure”, J. Reine Angew. Math., 508 (1999), 189–211 | DOI | MR | Zbl
[4] Kaiser T., “$R$-Analytic Functions”, Archive for Mathematical Logic, 55:5–6 (2016), 605–623 | DOI | MR | Zbl
[5] Gunning R., Rossi H., Analytic Functions of Several Complex Variables, Reprint of the 1965 original, AMS Chelsea Publishing, Providence, RI, 2009 | MR | Zbl
[6] Bianconi R., “Undefinability Results in O-Minimal Expansions of the Real Numbers”, Annals of Pure and Applied Logic, 134:1 (2005), 43–51 | DOI | MR | Zbl
[7] Ahlfors L. V., Complex Analysis, 3 ed., McGraw-Hill, New York, 1979 | MR | Zbl
[8] van den Dries L., Tame Topology and o-Minimal Structures, London Mathematical Society Lecture Note Series, 248, Cambridge University Press, Cambridge, 1998 | DOI | MR | Zbl
[9] Miller C., “Expansions of the Real Field with Power Functions”, Annals of Pure and Applied Logic, 68:1 (1994), 79–94 | DOI | MR | Zbl