Every lateral band is the kernel of an orthogonally additive operator
Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 4, pp. 115-118 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we continue a study of relationships between the lateral partial order $\sqsubseteq$ in a vector lattice (the relation $x \sqsubseteq y$ means that $x$ is a fragment of $y$) and the theory of orthogonally additive operators on vector lattices. It was shown in [1] that the concepts of lateral ideal and lateral band play the same important role in the theory of orthogonally additive operators as ideals and bands play in the theory for linear operators in vector lattices. We show that, for a vector lattice $E$ and a lateral band $G$ of $E$, there exists a vector lattice $F$ and a positive, disjointness preserving orthogonally additive operator $T \colon E \to F$ such that ${\rm ker} T = G$. As a consequence, we partially resolve the following open problem suggested in [1]: Are there a vector lattice $E$ and a lateral ideal in $E$ which is not equal to the kernel of any positive orthogonally additive operator $T\colon E\to F$ for any vector lattice $F$?
@article{VMJ_2021_23_4_a13,
     author = {M. A. Pliev},
     title = {Every lateral band is the kernel of an orthogonally additive operator},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {115--118},
     year = {2021},
     volume = {23},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2021_23_4_a13/}
}
TY  - JOUR
AU  - M. A. Pliev
TI  - Every lateral band is the kernel of an orthogonally additive operator
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2021
SP  - 115
EP  - 118
VL  - 23
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMJ_2021_23_4_a13/
LA  - en
ID  - VMJ_2021_23_4_a13
ER  - 
%0 Journal Article
%A M. A. Pliev
%T Every lateral band is the kernel of an orthogonally additive operator
%J Vladikavkazskij matematičeskij žurnal
%D 2021
%P 115-118
%V 23
%N 4
%U http://geodesic.mathdoc.fr/item/VMJ_2021_23_4_a13/
%G en
%F VMJ_2021_23_4_a13
M. A. Pliev. Every lateral band is the kernel of an orthogonally additive operator. Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 4, pp. 115-118. http://geodesic.mathdoc.fr/item/VMJ_2021_23_4_a13/

[1] Mykhaylyuk V., Pliev M., Popov M., “The Lateral Order on Riesz Spaces and Orthogonally Additive Operators”, Positivity, 25:2 (2021), 291–327 | DOI | MR | Zbl

[2] Erkursun-Özcan N., Pliev M., “On Orthogonally Additive Operators in $C$-Complete Vector Lattices”, Banach Journal of Mathematical Analysis, 16 (2022), 6 | DOI | MR | Zbl

[3] Popov M., “Horizontal Egorov Property of Riesz Spaces”, Proceedings of the American Mathematical Society, 149:1 (2021), 323–332 | DOI | MR | Zbl

[4] Aliprantis C. D., Burkinshaw O., Positive Operators, Acad. Press, New York, 1985 | MR | Zbl

[5] Kusraev A. G., Dominated Operators, Kluwer Academic Publishers, 2000 | MR | Zbl

[6] Pliev M., Popov M., “On Extension of Abstract Urysohn Operators”, Siberian Mathematical Journal, 57:3 (2016), 552–557 | DOI | MR | Zbl