Local grand Lebesgue spaces
Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 4, pp. 96-108 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We introduce “local grand” Lebesgue spaces $L^{p),\theta}_{x_0,a}(\Omega)$, $0 $\Omega \subseteq \mathbb{R}^n$, where the process of “grandization” relates to a single point $x_0\in \Omega$, contrast to the case of usual known grand spaces $L^{p),\theta}(\Omega)$, where “grandization” relates to all the points of $\Omega$. We define the space $L^{p),\theta}_{x_0,a}(\Omega)$ by means of the weight $a(|x-x_0|)^{\varepsilon p}$ with small exponent, $a(0)=0$. Under some rather wide assumptions on the choice of the local “grandizer” $a(t)$, we prove some properties of these spaces including their equivalence under different choices of the grandizers $a(t)$ and show that the maximal, singular and Hardy operators preserve such a “single-point grandization” of Lebesgue spaces $L^p(\Omega)$, $1, provided that the lower Matuszewska–Orlicz index of the function $a$ is positive. A Sobolev-type theorem is also proved in local grand spaces under the same condition on the grandizer.
@article{VMJ_2021_23_4_a10,
     author = {S. G. Samko and S. M. Umarkhadzhiev},
     title = {Local grand {Lebesgue} spaces},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {96--108},
     year = {2021},
     volume = {23},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2021_23_4_a10/}
}
TY  - JOUR
AU  - S. G. Samko
AU  - S. M. Umarkhadzhiev
TI  - Local grand Lebesgue spaces
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2021
SP  - 96
EP  - 108
VL  - 23
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMJ_2021_23_4_a10/
LA  - en
ID  - VMJ_2021_23_4_a10
ER  - 
%0 Journal Article
%A S. G. Samko
%A S. M. Umarkhadzhiev
%T Local grand Lebesgue spaces
%J Vladikavkazskij matematičeskij žurnal
%D 2021
%P 96-108
%V 23
%N 4
%U http://geodesic.mathdoc.fr/item/VMJ_2021_23_4_a10/
%G en
%F VMJ_2021_23_4_a10
S. G. Samko; S. M. Umarkhadzhiev. Local grand Lebesgue spaces. Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 4, pp. 96-108. http://geodesic.mathdoc.fr/item/VMJ_2021_23_4_a10/

[1] Iwaniec T., Sbordone C., “On the Integrability of the Jacobian under Minimal Hypotheses”, Arch. Rational Mech. Anal., 119:2 (1992), 129–143 | DOI | MR | Zbl

[2] Greco L., Iwaniec T., Sbordone C., “Inverting the $p$-Harmonic Operator”, Manuscripta Math., 92:1 (1997), 249–258 | DOI | MR | Zbl

[3] Fiorenza A., Gupta B., Jain P., “The Maximal Theorem in Weighted Grand Lebesgue Spaces”, Studia Math., 188:2 (2008), 123–133 | DOI | MR | Zbl

[4] Jain P., Singh A. P., Singh M., Stepanov V. D., “Sawyer's Duality Principle for Grand Lebesgue Spaces”, Math. Nachr., 292:4 (2019), 841–849 | DOI | MR | Zbl

[5] Kokilashvili V., Meskhi A., “A Note on the Boundedness of the Hilbert Transform in Weighted Grand Lebesgue Spaces”, Georgian Math. J., 16:3 (2009), 547–551 | DOI | MR | Zbl

[6] Fiorenza A., Formica M. R., Gogatishvili A., Kopaliani T., Rakotoson J. M., “Characterization of Interpolation Between Grand, Small or Classical Lebesgue Spaces”, Nonlinear Analysis, 177 (2018), 422–453 | DOI | MR | Zbl

[7] Kokilashvili V., Meskhi A., “Fractional Integrals with Measure in Grand Lebesgue and Morrey Spaces”, Integral Transforms and Special Functions, 2020, 1–15 | DOI | MR

[8] Edmunds D. E., Kokilashvili V., Meskhi A., “Sobolev-Type Inequalities for Potentials in Grand Variable Exponent Lebesgue Spaces”, Mathematische Nachrichten, 292:10 (2019), 2174–2188 | DOI | MR | Zbl

[9] Samko S. G., Umarkhadzhiev S. M., “On Iwaniec–Sbordone Spaces on Sets which May Have Infinite Measure”, Azerb. J. Math., 1:1 (2011), 67–84 https://www.azjm.org/volumes/1-1.html | MR | Zbl

[10] Samko S. G., Umarkhadzhiev S. M., “Grand Morrey Type Spaces”, Vladikavkaz Math. J., 22:4 (2020), 104–118 | DOI | MR | Zbl

[11] Samko S., Umarkhadzhiev S., “Riesz Fractional Integrals in Grand Lebesgue Spaces”, Fract. Calc. Appl. Anal., 19:3 (2016), 608–624 | DOI | MR | Zbl

[12] Samko S., Umarkhadzhiev S., “On Grand Lebesgue Spaces on Sets of Infinite Measure”, Mathematische Nachrichten, 290:5–6 (2017), 913–919 | DOI | MR | Zbl

[13] Umarkhadzhiev S., “Generalization of the Notion of Grand Lebesgue Space”, Russian Mathematics, 58:4 (2014), 35–43 | DOI | MR | Zbl

[14] Kokilashvili V., Meskhi A., Rafeiro H., Samko S., Integral Operators in Non-Standard Function Spaces, v. 2, Variable exponent Hölder, Morrey–Campanato and Grand Spaces, Birkhäuser, 2016 | MR

[15] Matuszewska W., Orlicz W., “On Some Classes of Functions with Regard to their Orders of Growth”, Studia Math., 26 (1965), 11–24 | DOI | MR | Zbl

[16] Samko N. G., “Weighted Hardy Operators in the Local Generalized Vanishing Morrey Spaces”, Positivity, 17:3 (2013), 683–706 | DOI | MR | Zbl

[17] Besov O. V., Il'in V. P., Nikol'skii S. M., Integral Representations of Functions and Embedding of Functions, Nauka, M., 1975, 480 pp. (in Russian) | MR | Zbl

[18] Stein E. M., Weiss G., “Interpolation of Operators with Change of Measures”, Trans. Amer. Math. Soc., 87 (1958), 159–172 | DOI | MR | Zbl

[19] Bergh J., Löfström J., Interpolation Spaces. An Introduction, Springer, Berlin, 1976 | MR | Zbl

[20] Duoandikoetxea J., Fourier Analysis, Graduate Studies in Math., 29, Amer. Math. Soc., Providence, 2001 | MR | Zbl

[21] Dyn'kin E. M., Osilenker B. B., “Weighted Norm Estimates for Singular Integrals and their Applications”, J. Sov. Math., 30 (1985), 2094–2154 | DOI | Zbl

[22] Adams D. R., Hedberg L. I., Function Spaces and Potential Theory, Springer, Berlin, 1996 | MR

[23] Muckenhoupt B., Wheeden R. L., “Weighted Norm Inequalities for Fractional Integrals”, Trans. Amer. Math. Soc., 192 (1974), 261–274 | DOI | MR | Zbl

[24] Kufner A., Persson L. E., Samko N., Weighted Inequalities of Hardy Type, Second Edition, World Scientific, New Jersey, 2017 | MR | Zbl

[25] Opic B., Kufner A., Hardy-Type Inequalities, Pitman Research Notes in Mathematics Series, 219, Longman Scientific $\$ Technical, Harlow, 1990 | MR | Zbl

[26] Persson E.-L., Samko S. G., “A Note on the Best Constants in Some Hardy Inequalities”, J. Math. Inequal., 9:2 (2015), 437–447 | DOI | MR | Zbl

[27] Umarkhadzhiev S. M., “Integral Operators with Homogeneous Kernels in Grand Lebesgue Spaces”, Mathematical Notes, 102:5 (2017), 710–721 | DOI | MR | Zbl