Local grand Lebesgue spaces
Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 4, pp. 96-108
Voir la notice de l'article provenant de la source Math-Net.Ru
We introduce “local grand” Lebesgue spaces $L^{p),\theta}_{x_0,a}(\Omega)$, $0$ $\Omega \subseteq \mathbb{R}^n$, where the process of “grandization” relates to a single point $x_0\in \Omega$, contrast to the case of usual known grand spaces $L^{p),\theta}(\Omega)$, where “grandization” relates to all the points of $\Omega$. We define the space $L^{p),\theta}_{x_0,a}(\Omega)$ by means of the weight $a(|x-x_0|)^{\varepsilon p}$ with small exponent, $a(0)=0$. Under some rather wide assumptions on the choice of the local “grandizer” $a(t)$, we prove some properties of these spaces including their equivalence under different choices of the grandizers $a(t)$ and show that the maximal, singular and Hardy operators preserve such a “single-point grandization” of Lebesgue spaces $L^p(\Omega)$, $1$, provided that the lower Matuszewska–Orlicz index of the function $a$ is positive. A Sobolev-type theorem is also proved in local grand spaces under the same condition on the grandizer.
@article{VMJ_2021_23_4_a10,
author = {S. G. Samko and S. M. Umarkhadzhiev},
title = {Local grand {Lebesgue} spaces},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {96--108},
publisher = {mathdoc},
volume = {23},
number = {4},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2021_23_4_a10/}
}
S. G. Samko; S. M. Umarkhadzhiev. Local grand Lebesgue spaces. Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 4, pp. 96-108. http://geodesic.mathdoc.fr/item/VMJ_2021_23_4_a10/