Quasi-two-dimensional coefficient inverse problem for the wave equation in a weakly horizontally inhomogeneous medium with memory
Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 4, pp. 15-27 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper studies the inverse problem of sequentially determining the two unknowns: the coefficient characterizing the properties of a medium with weakly horizontal inhomogeneity and the kernel of some integral operator describing the memory of the medium. The direct initial-boundary value problem contains zero data and the Neumann boundary condition. As additional information, the trace of the Fourier image of the direct problem solution at the boundary of the medium is given. To study inverse problems, it is assumed that the unknown coefficient decomposes into an asymptotic series. In this paper, a method is constructed for finding (taking into account the memory of the medium) the coefficient with accuracy $O(\epsilon^2)$. At the first stage, the solution of the direct problem in the zero approximation and the kernel of the integral operator are simultaneously determined. The inverse problem is reduced to solving a system of nonlinear Volterra integral equations of the second kind. At the second stage, the kernel is considered to be given, and the first approximation solution of the direct problem and the unknown coefficient are determined. In this case, the inverse problem and the problem of solving a linear system of Volterra integral equations of the second kind will be equivalent. Two theorems on unique local solvability of the inverse problems are proved. Numerical results on the kernel function and coefficient are presented.
@article{VMJ_2021_23_4_a1,
     author = {Z. A. Akhmatov and Zh. D. Totieva},
     title = {Quasi-two-dimensional coefficient inverse problem for the wave equation in a weakly horizontally inhomogeneous medium with memory},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {15--27},
     year = {2021},
     volume = {23},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2021_23_4_a1/}
}
TY  - JOUR
AU  - Z. A. Akhmatov
AU  - Zh. D. Totieva
TI  - Quasi-two-dimensional coefficient inverse problem for the wave equation in a weakly horizontally inhomogeneous medium with memory
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2021
SP  - 15
EP  - 27
VL  - 23
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMJ_2021_23_4_a1/
LA  - ru
ID  - VMJ_2021_23_4_a1
ER  - 
%0 Journal Article
%A Z. A. Akhmatov
%A Zh. D. Totieva
%T Quasi-two-dimensional coefficient inverse problem for the wave equation in a weakly horizontally inhomogeneous medium with memory
%J Vladikavkazskij matematičeskij žurnal
%D 2021
%P 15-27
%V 23
%N 4
%U http://geodesic.mathdoc.fr/item/VMJ_2021_23_4_a1/
%G ru
%F VMJ_2021_23_4_a1
Z. A. Akhmatov; Zh. D. Totieva. Quasi-two-dimensional coefficient inverse problem for the wave equation in a weakly horizontally inhomogeneous medium with memory. Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 4, pp. 15-27. http://geodesic.mathdoc.fr/item/VMJ_2021_23_4_a1/

[1] Romanov V. G., Obratnye zadachi matematicheskoi fiziki, Nauka, M., 1984 | MR

[2] Lorenzi A., Sinestrari E., “An inverse problem in the theory of materials with memory I”, Nonlinear Anal. TMA, 12:12 (1988), 1317–1335 | DOI | MR | Zbl

[3] Lorenzi A., “An inverse problem in the theory of materials with memory II”, Semigroup Theory and Applications, Pure and Appl. Math., 116, 1989, 261–290 | MR | Zbl

[4] Durdiev D. K., “Obratnaya zadacha dlya trekhmernogo volnovogo uravneniya v srede s pamyatyu”, Mat. analiz i diskretnaya matematika, NGU, Novosibirsk, 1989, 19–27

[5] Lorenzi A., Paparoni E., “Direct and inverse problems in the theory of materials with memory”, Ren. Sem. Math. Univ., 87 (1992), 105–138 | MR | Zbl

[6] Bukhgeym A. L., “Inverse problems of memory reconstruction”, J. of Inverse and Ill-Posed Problems, 1:3 (1993), 193–206 | DOI | MR

[7] Durdiev D. K., “Mnogomernaya obratnaya zadacha dlya uravneniya s pamyatyu”, Sib. mat. zhurn., 35:3 (1994), 574–582 | DOI | MR | Zbl

[8] Bukhgeim A. L., Dyatlov G. V., “Inverse problems for equations with memory”, SIAM J. Math. Fool., 1:2 (1998), 1–17 | MR

[9] Durdiev D. K., Obratnye zadachi dlya sred s posledeistviem, Turon-Ikbol, Tashkent, 2014

[10] Durdiev D. K., Safarov Zh. Sh., “Obratnaya zadacha opredeleniya yadra dlya uravneniya vyazkouprugosti v ogranichennoi oblasti”, Mat. zametki, 97:6 (2015), 855–867 | Zbl

[11] Durdiev D. K., Totieva Zh. D., “Zadacha opredeleniya mnogomernogo yadra uravneniya vyazkouprugosti”, Vladikavk. mat. zhurn., 17:4 (2015), 18–43 | DOI | MR | Zbl

[12] Durdiev D. K., Totieva Zh. D., “Zadacha ob opredelenii odnomernogo yadra elektrovyazkouprugosti”, Sib. mat. zhurn., 58:3 (2017), 553–572 | DOI | MR | Zbl

[13] Durdiev D. K., Rakhmonov A. A., “Obratnaya zadacha dlya sistemy integro-differentsialnykh uravnenii SH-voln v vyazkouprugoi poristoi srede: globalnaya razreshimost”, Teor. i mat. fizika, 195:3 (2018), 491–506 | DOI | MR | Zbl

[14] Durdiev U. D., “A problem of identification of a special 2D memory kernel in an integro-differential hyperbolic equation”, Eurasian J. Math. Comp. App., 7:2 (2019), 4–19

[15] Durdiev U. D., Totieva Z. D., “A problem of determining a special spatial part of 3D memory kernel in an integro-differential hyperbolic equation”, Math. Meth. Appl. Sci., 42:18 (2019), 7440–7451 | DOI | MR | Zbl

[16] Durdiev D. K., Totieva Zh. D., “O globalnoi razreshimosti mnogomernoi obratnoi zadachi dlya uravneniya s pamyatyu”, Sib. mat. zhurn., 62:2 (2021), 215–229 | MR | Zbl

[17] Kumar P., Kinra R., Mohan M., “A local in time existence and uniqueness result of an inverse problem for the Kelvin–Voigt fluids”, Inverse Problems, 37:8 (2021), 085005 | DOI | MR | Zbl

[18] Blagoveschenskii A. S., Fedorenko D. A., “Obratnaya zadacha dlya uravneniya akustiki v slabo gorizontalno-neodnorodnoi srede”, Zap. nauch. sem. POMI, 354, 2008, 81–99

[19] Durdiev D. K., Bozorov Z. R., “Zadacha opredeleniya yadra integro-differentsialnogo volnogo uravneniya so slabo gorizontalnoi odnorodnostyu”, Dalnevost. matem. zhurn., 13:2 (2013), 209–221 | MR | Zbl

[20] Durdiev D. K., “Obratnaya zadacha opredeleniya dvukh koeffitsientov v odnom integrodifferentsialnom volnovom uravnenii”, Sib. zhurn. industr. matem., 12:3 (2009), 28–40 | MR | Zbl

[21] Kurant R., Uravneniya s chastnymi proizvodnymi, Mir, M., 1964

[22] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Fizmatlit, M., 2006 | MR

[23] Yakhno V. G., Obratnye zadachi dlya differentsialnykh uravnenii uprugosti, Nauka, Novosibirsk, 1988 | MR