@article{VMJ_2021_23_4_a1,
author = {Z. A. Akhmatov and Zh. D. Totieva},
title = {Quasi-two-dimensional coefficient inverse problem for the wave equation in a weakly horizontally inhomogeneous medium with memory},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {15--27},
year = {2021},
volume = {23},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2021_23_4_a1/}
}
TY - JOUR AU - Z. A. Akhmatov AU - Zh. D. Totieva TI - Quasi-two-dimensional coefficient inverse problem for the wave equation in a weakly horizontally inhomogeneous medium with memory JO - Vladikavkazskij matematičeskij žurnal PY - 2021 SP - 15 EP - 27 VL - 23 IS - 4 UR - http://geodesic.mathdoc.fr/item/VMJ_2021_23_4_a1/ LA - ru ID - VMJ_2021_23_4_a1 ER -
%0 Journal Article %A Z. A. Akhmatov %A Zh. D. Totieva %T Quasi-two-dimensional coefficient inverse problem for the wave equation in a weakly horizontally inhomogeneous medium with memory %J Vladikavkazskij matematičeskij žurnal %D 2021 %P 15-27 %V 23 %N 4 %U http://geodesic.mathdoc.fr/item/VMJ_2021_23_4_a1/ %G ru %F VMJ_2021_23_4_a1
Z. A. Akhmatov; Zh. D. Totieva. Quasi-two-dimensional coefficient inverse problem for the wave equation in a weakly horizontally inhomogeneous medium with memory. Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 4, pp. 15-27. http://geodesic.mathdoc.fr/item/VMJ_2021_23_4_a1/
[1] Romanov V. G., Obratnye zadachi matematicheskoi fiziki, Nauka, M., 1984 | MR
[2] Lorenzi A., Sinestrari E., “An inverse problem in the theory of materials with memory I”, Nonlinear Anal. TMA, 12:12 (1988), 1317–1335 | DOI | MR | Zbl
[3] Lorenzi A., “An inverse problem in the theory of materials with memory II”, Semigroup Theory and Applications, Pure and Appl. Math., 116, 1989, 261–290 | MR | Zbl
[4] Durdiev D. K., “Obratnaya zadacha dlya trekhmernogo volnovogo uravneniya v srede s pamyatyu”, Mat. analiz i diskretnaya matematika, NGU, Novosibirsk, 1989, 19–27
[5] Lorenzi A., Paparoni E., “Direct and inverse problems in the theory of materials with memory”, Ren. Sem. Math. Univ., 87 (1992), 105–138 | MR | Zbl
[6] Bukhgeym A. L., “Inverse problems of memory reconstruction”, J. of Inverse and Ill-Posed Problems, 1:3 (1993), 193–206 | DOI | MR
[7] Durdiev D. K., “Mnogomernaya obratnaya zadacha dlya uravneniya s pamyatyu”, Sib. mat. zhurn., 35:3 (1994), 574–582 | DOI | MR | Zbl
[8] Bukhgeim A. L., Dyatlov G. V., “Inverse problems for equations with memory”, SIAM J. Math. Fool., 1:2 (1998), 1–17 | MR
[9] Durdiev D. K., Obratnye zadachi dlya sred s posledeistviem, Turon-Ikbol, Tashkent, 2014
[10] Durdiev D. K., Safarov Zh. Sh., “Obratnaya zadacha opredeleniya yadra dlya uravneniya vyazkouprugosti v ogranichennoi oblasti”, Mat. zametki, 97:6 (2015), 855–867 | Zbl
[11] Durdiev D. K., Totieva Zh. D., “Zadacha opredeleniya mnogomernogo yadra uravneniya vyazkouprugosti”, Vladikavk. mat. zhurn., 17:4 (2015), 18–43 | DOI | MR | Zbl
[12] Durdiev D. K., Totieva Zh. D., “Zadacha ob opredelenii odnomernogo yadra elektrovyazkouprugosti”, Sib. mat. zhurn., 58:3 (2017), 553–572 | DOI | MR | Zbl
[13] Durdiev D. K., Rakhmonov A. A., “Obratnaya zadacha dlya sistemy integro-differentsialnykh uravnenii SH-voln v vyazkouprugoi poristoi srede: globalnaya razreshimost”, Teor. i mat. fizika, 195:3 (2018), 491–506 | DOI | MR | Zbl
[14] Durdiev U. D., “A problem of identification of a special 2D memory kernel in an integro-differential hyperbolic equation”, Eurasian J. Math. Comp. App., 7:2 (2019), 4–19
[15] Durdiev U. D., Totieva Z. D., “A problem of determining a special spatial part of 3D memory kernel in an integro-differential hyperbolic equation”, Math. Meth. Appl. Sci., 42:18 (2019), 7440–7451 | DOI | MR | Zbl
[16] Durdiev D. K., Totieva Zh. D., “O globalnoi razreshimosti mnogomernoi obratnoi zadachi dlya uravneniya s pamyatyu”, Sib. mat. zhurn., 62:2 (2021), 215–229 | MR | Zbl
[17] Kumar P., Kinra R., Mohan M., “A local in time existence and uniqueness result of an inverse problem for the Kelvin–Voigt fluids”, Inverse Problems, 37:8 (2021), 085005 | DOI | MR | Zbl
[18] Blagoveschenskii A. S., Fedorenko D. A., “Obratnaya zadacha dlya uravneniya akustiki v slabo gorizontalno-neodnorodnoi srede”, Zap. nauch. sem. POMI, 354, 2008, 81–99
[19] Durdiev D. K., Bozorov Z. R., “Zadacha opredeleniya yadra integro-differentsialnogo volnogo uravneniya so slabo gorizontalnoi odnorodnostyu”, Dalnevost. matem. zhurn., 13:2 (2013), 209–221 | MR | Zbl
[20] Durdiev D. K., “Obratnaya zadacha opredeleniya dvukh koeffitsientov v odnom integrodifferentsialnom volnovom uravnenii”, Sib. zhurn. industr. matem., 12:3 (2009), 28–40 | MR | Zbl
[21] Kurant R., Uravneniya s chastnymi proizvodnymi, Mir, M., 1964
[22] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Fizmatlit, M., 2006 | MR
[23] Yakhno V. G., Obratnye zadachi dlya differentsialnykh uravnenii uprugosti, Nauka, Novosibirsk, 1988 | MR