Almost convergent $0$-$1$-sequences and primes
Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 4, pp. 5-14 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is devoted to $0$-$1$-sequences. We establish the connection between values that Sucheston functional can take on $0$-$1$-sequence and multiplicative structure of the support of the sequence. If the set of all the divisors of support elements is finite, then the sequence is almost convergent to zero. Then we consider characteristic sequences of sets of multiples and establish necessary and sufficient conditions for the upper Sucheston functional to be $1$ on such sequence. We prove that there are infinitely many sets of pairwise relative prime numbers such that the lower Sucheston functional evaluates to $1$ on the corresponding set of multiples (and lower Sucheston functional never evaluates to $0$ on a set of multiples).
@article{VMJ_2021_23_4_a0,
     author = {N. N. Avdeev},
     title = {Almost convergent $0$-$1$-sequences and primes},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {5--14},
     year = {2021},
     volume = {23},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2021_23_4_a0/}
}
TY  - JOUR
AU  - N. N. Avdeev
TI  - Almost convergent $0$-$1$-sequences and primes
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2021
SP  - 5
EP  - 14
VL  - 23
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMJ_2021_23_4_a0/
LA  - ru
ID  - VMJ_2021_23_4_a0
ER  - 
%0 Journal Article
%A N. N. Avdeev
%T Almost convergent $0$-$1$-sequences and primes
%J Vladikavkazskij matematičeskij žurnal
%D 2021
%P 5-14
%V 23
%N 4
%U http://geodesic.mathdoc.fr/item/VMJ_2021_23_4_a0/
%G ru
%F VMJ_2021_23_4_a0
N. N. Avdeev. Almost convergent $0$-$1$-sequences and primes. Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 4, pp. 5-14. http://geodesic.mathdoc.fr/item/VMJ_2021_23_4_a0/

[1] Mazur S., “O metodach sumowalnosci”, Ann. Soc. Polon. Math. (Supplement), 1929, 102–107

[2] Banakh S., Teoriya lineinykh operatsii, Regulyar. i khaot. dinamika, M.–Izhevsk, 2001, 272 pp.

[3] Lorentz G. G., “A contribution to the theory of divergent sequences”, Acta Mathematica, 80:1 (1948), 167–190 | DOI | MR | Zbl

[4] Sucheston L., “Banach limits”, Amer. Math. Monthly, 74 (1967), 308–311 | DOI | MR | Zbl

[5] Semenov E. M., Sukochev F. A., Usachev A. S., “Geometriya banakhovykh predelov i ikh prilozheniya”, Uspekhi mat. nauk, 75:4(454) (2020), 153–194 | DOI | MR | Zbl

[6] Avdeev N. N., “O prostranstve pochti skhodyaschikhsya posledovatelnostei”, Mat. zametki, 105:3 (2019), 462–466 | DOI | MR | Zbl

[7] Hall R. R., Tenenbaum G., “On Behrend sequences”, Mathematical Proceedings of the Cambridge Philosophical Society Cambridge University Press, 112, 1992, 467–482 | DOI | MR | Zbl

[8] Davenport H., Erdos P., “On sequences of positive integers”, Acta Arithm., 2 (1936), 147–151 | DOI

[9] Davenport H., Erdos P., “On sequences of positive integers”, J. Indian Math. Soc., New Series, 15 (1951), 19–24 | DOI | MR | Zbl

[10] Besicovitch A., “On the density of certain sequences of integers”, Mathematische Annalen, 110:1 (1935), 336–341 | DOI | MR

[11] Hall R. R., Sets of Multiples, Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 1996 | DOI | MR | Zbl

[12] Euler L., “Variae observationes circa series infinitas”, Commentarii Academiae Scientiarum Imperialis Petropolitanae, 9 (1737), 160–188