Order properties of homogeneous orthogonally additive polynomials
Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 3, pp. 91-112
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This is a survey of author's results on the structure of orthogonally additive homogeneous polynomials in vector, Banach and quasi-Banach lattices. The research method is based on the linearization by means of the power of a vector lattice and the canonical polynomial, presented in Section 1. Next, in Section 2, some immediate applications are given: criterion for kernel representability, existence of a simultaneous extension and multiplicative representation from a majorizing sublattice, a characterization of extreme extensions. Section 3 provides a complete description and multiplicative representation for homogeneous disjointness preserving polynomials. Section 4 is devoted to the problem of compact and weakly compact domination for homogeneous polynomials in Banach lattices. Section 5 deals with convexity and concavity of homogeneous polynomials between quasi-Banach lattices, while Section 6 handle the condition under which the quasi-Banach lattice of orthogonally additive homogeneous polynomials is $(p,q)$-convex, or $(p,q)$-concave, or geometrically convex. Section 7 provides a characterization and analytic description of polynomials representable as a finite sum of disjointness preserving polynomials. Finally, some challenging open problems are listed in Section 8.
@article{VMJ_2021_23_3_a7,
     author = {Z. A. Kusraeva},
     title = {Order properties of homogeneous orthogonally additive polynomials},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {91--112},
     year = {2021},
     volume = {23},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2021_23_3_a7/}
}
TY  - JOUR
AU  - Z. A. Kusraeva
TI  - Order properties of homogeneous orthogonally additive polynomials
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2021
SP  - 91
EP  - 112
VL  - 23
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMJ_2021_23_3_a7/
LA  - ru
ID  - VMJ_2021_23_3_a7
ER  - 
%0 Journal Article
%A Z. A. Kusraeva
%T Order properties of homogeneous orthogonally additive polynomials
%J Vladikavkazskij matematičeskij žurnal
%D 2021
%P 91-112
%V 23
%N 3
%U http://geodesic.mathdoc.fr/item/VMJ_2021_23_3_a7/
%G ru
%F VMJ_2021_23_3_a7
Z. A. Kusraeva. Order properties of homogeneous orthogonally additive polynomials. Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 3, pp. 91-112. http://geodesic.mathdoc.fr/item/VMJ_2021_23_3_a7/

[1] Dineen S., Complex Analysis on Infinite Dimensional Spaces, Springer, Berlin, 1999, xv+543 pp. | MR | Zbl

[2] Grecu B. C., Ryan R. A., “Polynomials on Banach spaces with unconditional bases”, Proc. Amer. Math. Soc., 133:4 (2005), 1083–1091 | DOI | MR | Zbl

[3] Bu Q., Buskes G., “Polynomials on Banach lattices and positive tensor products”, J. Math. Anal. Appl., 388:2 (2012), 845–862 | DOI | MR | Zbl

[4] Loane J., Polynomials on Riesz spaces, Thesis, Department of Math., Nat. Univ. of Ireland, Galway, 2007

[5] Linares P., Orthogonal additive polynomials and applications, Thesis, Departamento de Analisis Matematico, Universidad Complutense de Madrid, Madrid, 2009

[6] Kusraeva Z. A., Ortogonalno additivnye polinomy v vektornykh reshetkakh, Diss. ... k.f.-m.n., In-t mat-ki im. S. L. Soboleva SO RAN, Novosibirsk, 2013 | Zbl

[7] Kusraeva Z. A., “Powers of quasi-banach lattices and orthogonally additive polynomials”, J. Math. Anal. and Appl., 458:1 (2018), 767–780 | DOI | MR | Zbl

[8] Kusraeva Z. A., “Convexity conditions for the space of regular operators”, Positivity, 23:2 (2019), 445–459 | DOI | MR | Zbl

[9] Kusraev A. G., Kusraeva Z. A., “Summy poryadkovo ogranichennykh operatorov, sokhranyayuschikh diz'yunktnost”, Sib. matem. zhurn., 60:1 (2019), 148–161 | DOI | MR | Zbl

[10] Kusraeva Z. A., “Monomial decomposition of homogeneous polynomials in vector lattices”, Advances in Operator Theory, 4:2 (2019), 428–446 | DOI | MR | Zbl

[11] Kusraeva Z. A., “Sums of disjointness preserving multilinear operators”, Positivity, 25:2 (2021), 669–678 | DOI | MR | Zbl

[12] Kusraeva Z. A., “O predstavlenii ortogonalno additivnykh polinomov”, Sib. mat. zhurn., 52:2 (2011), 315–325 | MR | Zbl

[13] Kusraeva Z. A., “O prodolzhenii ortogonalno additivnykh regulyarnykh polinomov”, Vladikavk. mat. zhurn., 13:4 (2011), 28–34 | MR | Zbl

[14] Kusraeva Z. A., “Odnorodnye ortogonalno additivnye polinomy v vektornykh reshetkakh”, Mat. zametki, 91:5 (2012), 704–710 | DOI | MR | Zbl

[15] Kusraeva Z. A., “Odnorodnye polinomy, srednie stepennye i srednie geometricheskie v vektornykh reshetka”, Vladikavk. mat. zhurn., 16:4 (2014), 49–53 | DOI | MR | Zbl

[16] Kusraeva Z. A., “Kharakterizatsiya i multiplikativnoe predstavlenie odnorodnykh polinomov, sokhranyayuschikh diz'yunktnost”, Vladikavk. mat. zhurn., 18:1 (2016), 51–62 | DOI | MR | Zbl

[17] Kusraeva Z. A., “O kompaktnoi mazhoratsii odnorodnykh ortogonalno additivnykh polinomov”, Sib. matem. zhurn., 57:3 (2016), 658–665 | DOI | MR | Zbl

[18] Aliprantis C. D., Burkinshaw O., Positive Operators, Acad. Press Inc., London etc., 1985, xvi+367 pp. | MR | Zbl

[19] Maligranda L., “Type, cotype and convexity properties of quasi-banach spaces”, Proc. of the International Symposium on Banach and Function Spaces (Kitakyushu, Japan), Yokohama Publ., Yokohama, 2004, 83–120 | MR | Zbl

[20] Kalton N. J., “Quasi-Banach spaces”, Handbook of the Geometry of Banach Spaces, v. 2, eds. W. B. Johnson, J. Lindenstrauss, Elsevier, Amsterdam, 2003, 1118–1130 | MR

[21] Boulabiar K., Buskes G., “Vector lattice powers: $f$-algebras and functional calculus”, Comm. Algebra, 34:4 (2006), 1435–1442 | DOI | MR | Zbl

[22] Ben Amor F., “Orthogonally additive homogenous polynomials on vector lattices”, Comm. Algebra, 43:3 (2015), 1118–1134 | DOI | MR | Zbl

[23] Benyamini Y., Lassalle S., Llavona J. G., “Homogeneous orthogonally additive polynomials on Banach lattices”, Bull. London Math. Soc., 38:3 (2006), 459–469 | DOI | MR | Zbl

[24] Ibort A., Linares P., Llavona J. G., “A representation theorem for orthogonally additive polynomials on Riesz spaces”, Rev. Mat. Complut., 25 (2012), 21–30 | DOI | MR | Zbl

[25] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nevskii Dialekt, BKhV-Peterburg, SPb., 2004, 816 pp. | MR

[26] Kusraev A. G., Dominated Operators, Kluwer Academic Publ., Dordrecht, 2000, xiv+446 pp. | DOI | MR | Zbl

[27] Meyer-Nieberg P., Banach Lattices, Springer-Verlag, Berlin etc., 1991, xv+395 pp. | DOI | MR | Zbl

[28] Buskes G., Schwanke C., “Characterizing bounded orthogonally additive polynomials on vector lattices”, Arch. Math., 112 (2019), 181–190 | DOI | MR | Zbl

[29] Schwanke C., “Some notes on orthogonally additive polynomials”, Functional Analysis, 2020, arXiv: 2012.13124

[30] Gutman A. E., “Disjointness preserving operators”, Vector Lattices and Integral Operators, Mathematics and its Applications, 358, ed. S. S. Kutateladze, Kluwer Academic Publ., Dordrecht etc., 1996, 359–454 | DOI | MR | Zbl

[31] Abramovich Y. A., Aliprantis C. D., “Positive operators”, Handbook of the Geometry of Banach Spaces, v. 1, eds. W. B. Johnson, J. Lindenstrauss, Elsevier, Amsterdam a. o., 2001, 85–122 | DOI | MR | Zbl

[32] Flores J., Hernández F. L., Tradacete P., “Domination problems for strictly singular operators and other related classes”, Positivity, 15:4 (2011), 595–616 | DOI | MR | Zbl

[33] Cuartero B., Triana M.A., “$(p,q)$-Convexity in quasi-Banach lattices and applications”, Stud. Math., 84 (1986), 113–124 | DOI | MR | Zbl

[34] Wickstead A. W., “Converses for the Dodds–Fremlin and Kalton–Saab theorems”, Math. Proc. Camb. Phil. Soc., 120:1 (1996), 175–179 | DOI | MR | Zbl

[35] Wickstead A. W., “Extremal structure of cones of operators”, Quart. J. Math. Oxford Ser., 32:2 (1981), 239–253 | DOI | MR | Zbl

[36] Li Y., Bu Q., “Majorization for compact and weakly compact polynomials on Banach lattices”, Positivity and Noncommutative Analysis, Trends in Mathematics, eds. Buskes at al., Birkhauser/Springer, Cham, 2019, 339–348 | DOI | MR | Zbl

[37] Kusraev A. G., Kusraeva Z. A., “Compact disjointness preserving polynomials on quasi-Banach lattices”, J. Math. Anal. Appl., 498:1 (2021), 124924 | DOI | MR | Zbl

[38] Reisner S., “Operators which factor through convex Banach lattices”, Canad. J. Math., 32:6 (1980), 1482–1500 | DOI | MR | Zbl

[39] Raynaud Y., Tradacete P., “Interpolation of Banach lattices and factorization of $p$-convex and $q$-concave operators”, Integral Equat. and Oper. Theory, 66 (2010), 79–112 | DOI | MR | Zbl

[40] Pisier G., “Grothendieck's theorem, past and present”, Bull. Amer. Math. Soc., 49:2 (2012), 237–323 | DOI | MR | Zbl

[41] Krivine J. L., “Théorèmes de factorization dans les espaces réticules”, Seminaire Analyse Fonctionalle (dit. “Maurey-Schwartz”), 1973–1974, no. 22–23, 1–22 | MR

[42] Kalton N. J., “Convexity conditions for non-locally convex lattices”, Glasgow Math. J., 25:2 (1984), 141–152 | DOI | MR | Zbl

[43] Diestel J., Jarchow H., Tonge A., Absolutely Summing Operators, Cambridge Univ. Press, N. Y., 1995 | DOI | MR | Zbl

[44] Bu Q., Buskes G., Li Y., “Abstract $M$- and abstract $L$-spaces of polynomials on Banach lattices”, Proc. Edinb. Math. Soc., 58:3 (2015), 617–629 | DOI | MR | Zbl

[45] Dănet N., “$p$-Convexity ($p$-concavity) of some Banach lattices of operators”, Analele Universitatii din Craiova Seria Matematică–Fizică–Chimie, 13 (1985), 38–45 | MR

[46] Bernau C. B., Huijsmans C. B., de Pagter B., “Sums of lattice homomorphisms”, Proc. Amer. Math. Soc., 115:1 (1992), 151–156 | DOI | MR | Zbl

[47] Dineen S., “Extreme integral polynomials on a complex Banach space”, Math. Scand., 92:1 (2003), 129–140 | DOI | MR | Zbl

[48] Dimant V., Galicer D., García R., “Geometry of integral polynomials, $M$-ideals and unique norm preserving extensions”, J. of Funct. Anal., 262:5 (2012), 1987–2012 | DOI | MR | Zbl

[49] Wickstead A. W., “When do the regular operators between two Banach lattices form a lattices”, Positivity and Noncommutative Analysis, Trends in Mathematics, eds. G. Buskes et al., Springer, 2019, 591–599 | DOI | MR