Partial integral operators of Fredholm type on Kaplansky--Hilbert module over $L_0$
    
    
  
  
  
      
      
      
        
Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 3, pp. 80-90
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The article studies some characteristic properties of self-adjoint partially integral operators of Fredholm type in the Kaplansky–Hilbert module $L_{0}\left[L_{2}\left(\Omega_{1}\right)\right]$ over $L_{0}\left(\Omega_{2}\right)$. Some mathematical tools from the theory of Kaplansky–Hilbert module are used. In the Kaplansky–Hilbert module $L_{0}\left[L_{2}\left(\Omega_{1}\right)\right]$ over $ L_{0} \left (\Omega _ {2} \right)$ we consider the partially integral operator of Fredholm type $T_{1}$ ($ \Omega_{1} $ and $\Omega_{2} $ are closed bounded sets in $ {\mathbb R}^{\nu_{1}}$ and $ {\mathbb R}^{\nu_{2}},$ $\nu_{1}, \nu_{2} \in {\mathbb N} $, respectively). The existence of $ L_{0} \left (\Omega _ {2} \right) $ nonzero eigenvalues for any self-adjoint partially integral operator $T_{1}$ is proved; moreover, it is shown that $T_{1}$ has finite and countable number of real $L_{0}(\Omega_{2})$-eigenvalues. In the latter case, the sequence $ L_{0}(\Omega_{2})$-eigenvalues is order convergent to the zero function. It is also established that the operator $T_{1}$ admits an expansion into a series of $\nabla_{1}$-one-dimensional operators.
			
            
            
            
          
        
      @article{VMJ_2021_23_3_a6,
     author = {Yu. Kh. Eshkabilov and R. R. Kucharov},
     title = {Partial integral operators of {Fredholm} type on {Kaplansky--Hilbert} module over $L_0$},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {80--90},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2021_23_3_a6/}
}
                      
                      
                    TY - JOUR AU - Yu. Kh. Eshkabilov AU - R. R. Kucharov TI - Partial integral operators of Fredholm type on Kaplansky--Hilbert module over $L_0$ JO - Vladikavkazskij matematičeskij žurnal PY - 2021 SP - 80 EP - 90 VL - 23 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMJ_2021_23_3_a6/ LA - en ID - VMJ_2021_23_3_a6 ER -
%0 Journal Article %A Yu. Kh. Eshkabilov %A R. R. Kucharov %T Partial integral operators of Fredholm type on Kaplansky--Hilbert module over $L_0$ %J Vladikavkazskij matematičeskij žurnal %D 2021 %P 80-90 %V 23 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMJ_2021_23_3_a6/ %G en %F VMJ_2021_23_3_a6
Yu. Kh. Eshkabilov; R. R. Kucharov. Partial integral operators of Fredholm type on Kaplansky--Hilbert module over $L_0$. Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 3, pp. 80-90. http://geodesic.mathdoc.fr/item/VMJ_2021_23_3_a6/