@article{VMJ_2021_23_3_a6,
author = {Yu. Kh. Eshkabilov and R. R. Kucharov},
title = {Partial integral operators of {Fredholm} type on {Kaplansky{\textendash}Hilbert} module over $L_0$},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {80--90},
year = {2021},
volume = {23},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2021_23_3_a6/}
}
TY - JOUR AU - Yu. Kh. Eshkabilov AU - R. R. Kucharov TI - Partial integral operators of Fredholm type on Kaplansky–Hilbert module over $L_0$ JO - Vladikavkazskij matematičeskij žurnal PY - 2021 SP - 80 EP - 90 VL - 23 IS - 3 UR - http://geodesic.mathdoc.fr/item/VMJ_2021_23_3_a6/ LA - en ID - VMJ_2021_23_3_a6 ER -
Yu. Kh. Eshkabilov; R. R. Kucharov. Partial integral operators of Fredholm type on Kaplansky–Hilbert module over $L_0$. Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 3, pp. 80-90. http://geodesic.mathdoc.fr/item/VMJ_2021_23_3_a6/
[1] Appell J., Kalitvin A. S., Zabrejko P. P., Partial Integral Operators and Integro-Differential Equations, New York–Basel, 2000, 578 pp. | MR | Zbl
[2] Eshkabilov Yu. Kh., “On a Discrete “Three-Particle” Schrodinger Operator in the Hubbard Model”, Theor. Math. Phys., 149:2 (2006), 1497–1511 | DOI | MR | Zbl
[3] Eshkabilov Yu. Kh., Kucharov R. R., “Essential and Discrete Spectra of the Three-Particle Schrödinger Operator on a Lattice”, Theor. Math. Phys., 170:3 (2012), 341–353 | DOI | MR | Zbl
[4] Eshkabilov Yu. Kh., “The Efimov Effect for a Model “Three-Particle” Discrete Schrödinger Operator”, Theor. Math. Phys., 164:1 (2010), 896–904 | DOI | MR | Zbl
[5] Eshkabilov Yu. Kh., “Spectra of Partial Integral Operators with a Kernel of Three Variables”, Central European J. Math., 6:1 (2008), 149–157 | DOI | MR | Zbl
[6] Kusraev A. G., Dominated Operators, Kluwer Academic Publishers, Dordrecht etc., 2000, 445 pp. | MR | Zbl
[7] Kudaybergenov K. K., “$\nabla$-Fredholm Operators in Banach–Kantorovich Spaces”, Methods Func. Anal. Topology, 12:3 (2006), 234–242 | MR | Zbl
[8] Sarymsakov T. A., Semifields and Probability Theory, Fan, Tashkent, 1980 (in Russian) | MR
[9] Akhiezer N. I., Glazman I. M., Theory of Linear Operators in Hilbert Space, Nauka, M., 1966, 544 pp. (in Russian) | MR
[10] Kusraev A. G., “Cyclically Compact Operators in Banach Spaces”, Vladikavkaz Math. J., 2:1 (2000), 10–23 | MR | Zbl