Solvability of Cauchy problem for one system of first order quasilinear differential equations
Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 3, pp. 64-79

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Cauchy problem for a system of first-order quasilinear differential equations. The solvability of the problem is investigated in the initial coordinates using the additional argument method. Sufficient conditions for the existence and uniqueness of a local solution which has the same smoothness in the independent variable as the initial functions of the Cauchy problem are determined. An existence and uniqueness theorem of a local solution is proved. Sufficient conditions for the existence and uniqueness of a global solution are determined. The proof of the global solvability relies upon global estimates.
@article{VMJ_2021_23_3_a5,
     author = {M. V. Dontsova},
     title = {Solvability of {Cauchy} problem for one system of first order quasilinear differential equations},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {64--79},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2021_23_3_a5/}
}
TY  - JOUR
AU  - M. V. Dontsova
TI  - Solvability of Cauchy problem for one system of first order quasilinear differential equations
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2021
SP  - 64
EP  - 79
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2021_23_3_a5/
LA  - ru
ID  - VMJ_2021_23_3_a5
ER  - 
%0 Journal Article
%A M. V. Dontsova
%T Solvability of Cauchy problem for one system of first order quasilinear differential equations
%J Vladikavkazskij matematičeskij žurnal
%D 2021
%P 64-79
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2021_23_3_a5/
%G ru
%F VMJ_2021_23_3_a5
M. V. Dontsova. Solvability of Cauchy problem for one system of first order quasilinear differential equations. Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 3, pp. 64-79. http://geodesic.mathdoc.fr/item/VMJ_2021_23_3_a5/