Solvability of Cauchy problem for one system of first order quasilinear differential equations
Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 3, pp. 64-79 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the Cauchy problem for a system of first-order quasilinear differential equations. The solvability of the problem is investigated in the initial coordinates using the additional argument method. Sufficient conditions for the existence and uniqueness of a local solution which has the same smoothness in the independent variable as the initial functions of the Cauchy problem are determined. An existence and uniqueness theorem of a local solution is proved. Sufficient conditions for the existence and uniqueness of a global solution are determined. The proof of the global solvability relies upon global estimates.
@article{VMJ_2021_23_3_a5,
     author = {M. V. Dontsova},
     title = {Solvability of {Cauchy} problem for one system of first order quasilinear differential equations},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {64--79},
     year = {2021},
     volume = {23},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2021_23_3_a5/}
}
TY  - JOUR
AU  - M. V. Dontsova
TI  - Solvability of Cauchy problem for one system of first order quasilinear differential equations
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2021
SP  - 64
EP  - 79
VL  - 23
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMJ_2021_23_3_a5/
LA  - ru
ID  - VMJ_2021_23_3_a5
ER  - 
%0 Journal Article
%A M. V. Dontsova
%T Solvability of Cauchy problem for one system of first order quasilinear differential equations
%J Vladikavkazskij matematičeskij žurnal
%D 2021
%P 64-79
%V 23
%N 3
%U http://geodesic.mathdoc.fr/item/VMJ_2021_23_3_a5/
%G ru
%F VMJ_2021_23_3_a5
M. V. Dontsova. Solvability of Cauchy problem for one system of first order quasilinear differential equations. Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 3, pp. 64-79. http://geodesic.mathdoc.fr/item/VMJ_2021_23_3_a5/

[1] Dontsova M. V., “Issledovanie razreshimosti zadachi Koshi v iskhodnykh koordinatakh dlya sistemy kvazilineinykh uravnenii”, Problemy mat. analiza, 103 (2020), 91–100 | Zbl

[2] Dontsova M. V., “Razreshimost zadachi Koshi dlya sistemy kvazilineinykh uravnenii pervogo poryadka s pravymi chastyami $f_1={a_2}u(t,x) + {b_2}(t)v(t,x)$, $f_2={g_2}v(t,x)$”, Ufim. mat. zhurn., 11:1 (2019), 26–38 | MR | Zbl

[3] Dontsova M. V., “Dostatochnye usloviya nelokalnoi razreshimosti sistemy dvukh kvazilineinykh uravnenii pervogo poryadka so svobodnymi chlenami”, Izv. In-ta matem. i inform. Udmurt. gos. un-ta, 55 (2020), 60–78 | DOI | MR | Zbl

[4] Dontsova M. V., “Usloviya nelokalnoi razreshimosti sistemy so svobodnymi chlenami dlya sluchaya polozhitelnykh koeffitsientov”, Zhurn. Srednevolzh. mat. o-va, 19:4 (2017), 23–32 | DOI | Zbl

[5] Alekseenko S. N., Dontsova M. V., Pelinovsky P. E., “Global solutions to the shallow-water system with a method of an additional argument”, Applicable Analysis, 96:9 (2017), 1444–1465 | DOI | MR | Zbl

[6] Imanaliev M. I., Alekseenko S. N., “K voprosu suschestvovaniya gladkogo ogranichennogo resheniya dlya sistemy dvukh nelineinykh differentsialnykh uravnenii v chastnykh proizvodnykh pervogo poryadka”, Dokl. RAN, 379:1 (2001), 16–21 | MR | Zbl

[7] Dontsova M. V., “Usloviya nelokalnoi razreshimosti zadachi Koshi dlya sistemy differentsialnykh uravnenii v chastnykh proizvodnykh pervogo poryadka s pravymi chastyami spetsialnogo vida”, Ufim. mat. zhurn., 6:4 (2014), 71–82 | MR | Zbl