Solvability of Cauchy problem for one system of first order quasilinear differential equations
Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 3, pp. 64-79
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the Cauchy problem for a system of first-order quasilinear differential equations. The solvability of the problem is investigated in the initial coordinates using the additional argument method. Sufficient conditions for the existence and uniqueness of a local solution which has the same smoothness in the independent variable as the initial functions of the Cauchy problem are determined. An existence and uniqueness theorem of a local solution is proved. Sufficient conditions for the existence and uniqueness of a global solution are determined. The proof of the global solvability relies upon global estimates.
@article{VMJ_2021_23_3_a5,
author = {M. V. Dontsova},
title = {Solvability of {Cauchy} problem for one system of first order quasilinear differential equations},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {64--79},
publisher = {mathdoc},
volume = {23},
number = {3},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2021_23_3_a5/}
}
TY - JOUR AU - M. V. Dontsova TI - Solvability of Cauchy problem for one system of first order quasilinear differential equations JO - Vladikavkazskij matematičeskij žurnal PY - 2021 SP - 64 EP - 79 VL - 23 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMJ_2021_23_3_a5/ LA - ru ID - VMJ_2021_23_3_a5 ER -
M. V. Dontsova. Solvability of Cauchy problem for one system of first order quasilinear differential equations. Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 3, pp. 64-79. http://geodesic.mathdoc.fr/item/VMJ_2021_23_3_a5/