On generalized tree structures of Artin groups
Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 3, pp. 52-63 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The main algorithmic problems in group theory formulated at the beginning of XX century, are the problem of words, the problem of the conjugation of words and the isomorphism problem for finitely presented groups. P. S. Novikov proved the unsolvability of the main algorithmic problems in the class of finitely presented groups. Therefore, algorithmic problems are studied in particular groups. In 1983, K. Appel and P. Schupp defined a class of Artin groups of extra-large type, in which they solved the problems of equality and conjugation of words. In 2003, V. N. Bezverkhniĭ introduced the class of Artin groups with a tree structure. In the graph corresponding to the Artin group, it is always possible to allocate the maximum subgraph corresponding to the Artin group with a tree structure. V. N. Bezverkhniĭ and O. Y. Platonova solved algorithmic problem in the class of Artin groups. The article examines the structure of diagrams over generalized tree structures of Artin groups, which are tree products of Artin groups of extra-large type and Artin groups with a tree structure, amalgamated by cyclic subgroups corresponding to the generators of these groups, and their application to the effective writing out generators of the centralizer of an element and solving the problem of conjugation of words in this class of groups. The proof of the main results uses the method of diagrams worked out by van Kampen, reopened by R. Lindon and refined by V. N. Bezverkhniĭ.
@article{VMJ_2021_23_3_a4,
     author = {I. V. Dobrynina and A. S. Ugarov},
     title = {On generalized tree structures of {Artin} groups},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {52--63},
     year = {2021},
     volume = {23},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2021_23_3_a4/}
}
TY  - JOUR
AU  - I. V. Dobrynina
AU  - A. S. Ugarov
TI  - On generalized tree structures of Artin groups
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2021
SP  - 52
EP  - 63
VL  - 23
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMJ_2021_23_3_a4/
LA  - ru
ID  - VMJ_2021_23_3_a4
ER  - 
%0 Journal Article
%A I. V. Dobrynina
%A A. S. Ugarov
%T On generalized tree structures of Artin groups
%J Vladikavkazskij matematičeskij žurnal
%D 2021
%P 52-63
%V 23
%N 3
%U http://geodesic.mathdoc.fr/item/VMJ_2021_23_3_a4/
%G ru
%F VMJ_2021_23_3_a4
I. V. Dobrynina; A. S. Ugarov. On generalized tree structures of Artin groups. Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 3, pp. 52-63. http://geodesic.mathdoc.fr/item/VMJ_2021_23_3_a4/

[1] Dehn M., “Über Unendliche Diskontinuierliche Gruppen”, Math. Ann., 71 (1911), 116–144 | DOI | MR

[2] Tietze H., “Über die Topologischen Invarianten Mehrdimensionaler Mannigfaltigkeiten”, Monatsh. Math. Phys., 19 (1908), 1–118 | DOI | MR | Zbl

[3] Magnus V., Karras A., Soliter D., Kombinatornaya teoriya grupp, Nauka, M., 1974

[4] Lindon R., Shup P., Kombinatornaya teoriya grupp, Mir, M., 1980

[5] Olshanskii A. Yu., Geometriya opredelyayuschikh sootnoshenii v gruppakh, Nauka, M., 1989 | MR

[6] Novikov P. S., “Ob algoritmicheskoi nerazreshimosti problemy tozhdestva v teorii grupp”, Tr. MIAN SSSR, 44, 1955, 3–143 | MR

[7] Appel K., Schupp P., “Artins Groups and Infinite Coxter Groups”, Ivent. Math., 72:2 (1983), 201–220 | DOI | MR | Zbl

[8] Bezverkhnii V. N., “O gruppakh Artina, Kokstera s drevesnoi strukturoi”, Algebra i teoriya chisel: sovremennye problemy i prilozheniya, tez. dokl. V Mezhdunar. konf. (Tula, 2003), 33–34

[9] Bezverkhnii V. N., Karpova O. Yu., “Problemy ravenstva i sopryazhennosti slov v gruppakh Artina s drevesnoi strukturoi”, Izv. TulGU. Ser. Matematika. Mekhanika. Informatika, 12:1 (2006), 67–82

[10] Makanin G. S., “O normalizatorakh gruppy kos”, Mat. sb., 86(128):2(10) (1971), 171–179 | MR | Zbl

[11] Holt D. F., Rees S., “Biautomatic Structures in Systolic Artin Groups”, Internat. J. Algebra Comput., 31:03 (2021), 365–391 | DOI | MR | Zbl

[12] Bezverkhnii V. N., “Reshenie problemy obobschennoi sopryazhennosti slov v gruppakh Artina bolshogo tipa”, Fundam. i prikl. matematika, 5:1 (1999), 1–38 | MR | Zbl

[13] Bezverkhnii B. H., “Reshenie problemy sopryazhennosti slov v gruppakh Artina bolshogo tipa”, Algoritmicheskie problemy teorii grupp i polugrupp, TGPU, Tula, 1986, 26–61

[14] Bezverkhnii V. N., Kuznetsova A. N., “Razreshimost problemy stepennoi sopryazhennosti slov v gruppakh Artina ekstrabolshogo tipa”, Chebyshevskii sb., 9:1 (2008), 50–69 | MR

[15] Bezverkhnii B. H., Bezverkhnyaya N. B., Dobrynina I. V., Inchenko O. V., Ustyan A. E., “Ob algoritmicheskikh problemakh v gruppakh Kokstera”, Chebyshevskii sb., 17:4 (2016), 23–50 | DOI | MR | Zbl

[16] Dobrynina I. V., Ugarov A. S., “O tsentralizatore elementa v obobschennykh drevesnykh strukturakh grupp Artina”, Algebra, teoriya chisel i diskretnaya geometriya: sovremennye problemy, prilozheniya i problemy istorii, materialy XVII Mezhdunar. konf., posvyaschennoi 100-letiyu so dnya rozhdeniya professora N. I. Feldmana i 90-letiyu so dnya rozhdeniya professorov A. I. Vinogradova, A. V. Malysheva i B. F. Skubenko, TGPU, Tula, 2019, 42–44