@article{VMJ_2021_23_3_a3,
author = {Sh. Girish Babu and P. S. K. Reddy and G. Somashekhara},
title = {Conformal {Ricci} soliton in an {indefinitetrans-Sasakian} manifold},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {45--51},
year = {2021},
volume = {23},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2021_23_3_a3/}
}
TY - JOUR AU - Sh. Girish Babu AU - P. S. K. Reddy AU - G. Somashekhara TI - Conformal Ricci soliton in an indefinitetrans-Sasakian manifold JO - Vladikavkazskij matematičeskij žurnal PY - 2021 SP - 45 EP - 51 VL - 23 IS - 3 UR - http://geodesic.mathdoc.fr/item/VMJ_2021_23_3_a3/ LA - en ID - VMJ_2021_23_3_a3 ER -
Sh. Girish Babu; P. S. K. Reddy; G. Somashekhara. Conformal Ricci soliton in an indefinitetrans-Sasakian manifold. Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 3, pp. 45-51. http://geodesic.mathdoc.fr/item/VMJ_2021_23_3_a3/
[1] Basu N., Bhattacharyya A., “Conformal Ricci Soliton in Kenmotsu Manifold”, Glob. J. Adv. Res. Class. Mod. Geom., 4:1 (2015), 15–21 | MR
[2] Blair D. E., Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics, 509, Springer Verlag, 1976 | DOI | MR | Zbl
[3] Hamilton R. S., “The Ricci Flow on Surfaces”, Mathematics and General Relativity (Santa Cruz, CA, 1986), Contemp. Math., 71, Amer. Math. Soc., Providence, RI, 1988, 237–262 | DOI | MR
[4] Fischer A. E., “An Intorduction to Conformal Ricci Flow”, Class. Quantum Grav., 21 (2004), S171–S218 | DOI | MR | Zbl
[5] Oubina J. A., “New Classes of Almost Contact Metric Structures”, Publ. Math. Debrecen, 32 (1985), 187–193 | MR | Zbl