Conformal Ricci soliton in an indefinitetrans-Sasakian manifold
Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 3, pp. 45-51
Cet article a éte moissonné depuis la source Math-Net.Ru
Conformal Ricci solitons are self similar solutions of the conformal Ricci flow equation. A new class of $n$-dimensional almost contact manifold namely trans-Sasakian manifold was introduced by Oubina in 1985 and further study about the local structures of trans-Sasakian manifolds was carried by several authors. As a natural generalization of both Sasakian and Kenmotsu manifolds, the notion of trans-Sasakian manifolds, which are closely related to the locally conformal Kahler manifolds introduced by Oubina. This paper deals with the study of conformal Ricci solitons within the framework of indefinite trans-Sasakian manifold. Further, we investigate the certain curvature tensor on indefinite trans-Sasakian manifold. Also, we have proved some important results.
@article{VMJ_2021_23_3_a3,
author = {Sh. Girish Babu and P. S. K. Reddy and G. Somashekhara},
title = {Conformal {Ricci} soliton in an {indefinitetrans-Sasakian} manifold},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {45--51},
year = {2021},
volume = {23},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2021_23_3_a3/}
}
TY - JOUR AU - Sh. Girish Babu AU - P. S. K. Reddy AU - G. Somashekhara TI - Conformal Ricci soliton in an indefinitetrans-Sasakian manifold JO - Vladikavkazskij matematičeskij žurnal PY - 2021 SP - 45 EP - 51 VL - 23 IS - 3 UR - http://geodesic.mathdoc.fr/item/VMJ_2021_23_3_a3/ LA - en ID - VMJ_2021_23_3_a3 ER -
Sh. Girish Babu; P. S. K. Reddy; G. Somashekhara. Conformal Ricci soliton in an indefinitetrans-Sasakian manifold. Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 3, pp. 45-51. http://geodesic.mathdoc.fr/item/VMJ_2021_23_3_a3/
[1] Basu N., Bhattacharyya A., “Conformal Ricci Soliton in Kenmotsu Manifold”, Glob. J. Adv. Res. Class. Mod. Geom., 4:1 (2015), 15–21 | MR
[2] Blair D. E., Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics, 509, Springer Verlag, 1976 | DOI | MR | Zbl
[3] Hamilton R. S., “The Ricci Flow on Surfaces”, Mathematics and General Relativity (Santa Cruz, CA, 1986), Contemp. Math., 71, Amer. Math. Soc., Providence, RI, 1988, 237–262 | DOI | MR
[4] Fischer A. E., “An Intorduction to Conformal Ricci Flow”, Class. Quantum Grav., 21 (2004), S171–S218 | DOI | MR | Zbl
[5] Oubina J. A., “New Classes of Almost Contact Metric Structures”, Publ. Math. Debrecen, 32 (1985), 187–193 | MR | Zbl