Titchmarsh--Weyl theory of the singular Hahn--Sturm--Liouville equation
Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 3, pp. 16-26

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, we will consider the singular Hahn–Sturm–Liouville difference equation defined by $-q^{-1}D_{-\omega q^{-1},q^{-1}}D_{\omega ,q}y( x) +v(x) y( x) =\lambda y(x)$, $x\in (\omega _{0},\infty),$ where $\lambda$ is a complex parameter, $v$ is a real-valued continuous function at $\omega _{0}$ defined on $[\omega _{0},\infty)$. These type equations are obtained when the ordinary derivative in the classical Sturm–Liouville problem is replaced by the $\omega,q$-Hahn difference operator $D_{\omega,q}$. We develop the $\omega,q$-analogue of the classical Titchmarsh–Weyl theory for such equations. In other words, we study the existence of square-integrable solutions of the singular Hahn–Sturm–Liouville equation. Accordingly, first we define an appropriate Hilbert space in terms of Jackson–Nörlund integral and then we study families of regular Hahn–Sturm–Liouville problems on $[\omega_{0},q^{-n}]$, $n\in \mathbb{N}$. Then we define a family of circles that converge either to a point or a circle. Thus, we will define the limit-point, limit-circle cases in the Hahn calculus setting by using Titchmarsh's technique.
@article{VMJ_2021_23_3_a1,
     author = {B. P. Allahverdiev and H. Tuna},
     title = {Titchmarsh--Weyl theory of the singular {Hahn--Sturm--Liouville} equation},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {16--26},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2021_23_3_a1/}
}
TY  - JOUR
AU  - B. P. Allahverdiev
AU  - H. Tuna
TI  - Titchmarsh--Weyl theory of the singular Hahn--Sturm--Liouville equation
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2021
SP  - 16
EP  - 26
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2021_23_3_a1/
LA  - en
ID  - VMJ_2021_23_3_a1
ER  - 
%0 Journal Article
%A B. P. Allahverdiev
%A H. Tuna
%T Titchmarsh--Weyl theory of the singular Hahn--Sturm--Liouville equation
%J Vladikavkazskij matematičeskij žurnal
%D 2021
%P 16-26
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2021_23_3_a1/
%G en
%F VMJ_2021_23_3_a1
B. P. Allahverdiev; H. Tuna. Titchmarsh--Weyl theory of the singular Hahn--Sturm--Liouville equation. Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 3, pp. 16-26. http://geodesic.mathdoc.fr/item/VMJ_2021_23_3_a1/