Titchmarsh–Weyl theory of the singular Hahn–Sturm–Liouville equation
Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 3, pp. 16-26 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this work, we will consider the singular Hahn–Sturm–Liouville difference equation defined by $-q^{-1}D_{-\omega q^{-1},q^{-1}}D_{\omega ,q}y( x) +v(x) y( x) =\lambda y(x)$, $x\in (\omega _{0},\infty),$ where $\lambda$ is a complex parameter, $v$ is a real-valued continuous function at $\omega _{0}$ defined on $[\omega _{0},\infty)$. These type equations are obtained when the ordinary derivative in the classical Sturm–Liouville problem is replaced by the $\omega,q$-Hahn difference operator $D_{\omega,q}$. We develop the $\omega,q$-analogue of the classical Titchmarsh–Weyl theory for such equations. In other words, we study the existence of square-integrable solutions of the singular Hahn–Sturm–Liouville equation. Accordingly, first we define an appropriate Hilbert space in terms of Jackson–Nörlund integral and then we study families of regular Hahn–Sturm–Liouville problems on $[\omega_{0},q^{-n}]$, $n\in \mathbb{N}$. Then we define a family of circles that converge either to a point or a circle. Thus, we will define the limit-point, limit-circle cases in the Hahn calculus setting by using Titchmarsh's technique.
@article{VMJ_2021_23_3_a1,
     author = {B. P. Allahverdiev and H. Tuna},
     title = {Titchmarsh{\textendash}Weyl theory of the singular {Hahn{\textendash}Sturm{\textendash}Liouville} equation},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {16--26},
     year = {2021},
     volume = {23},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2021_23_3_a1/}
}
TY  - JOUR
AU  - B. P. Allahverdiev
AU  - H. Tuna
TI  - Titchmarsh–Weyl theory of the singular Hahn–Sturm–Liouville equation
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2021
SP  - 16
EP  - 26
VL  - 23
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMJ_2021_23_3_a1/
LA  - en
ID  - VMJ_2021_23_3_a1
ER  - 
%0 Journal Article
%A B. P. Allahverdiev
%A H. Tuna
%T Titchmarsh–Weyl theory of the singular Hahn–Sturm–Liouville equation
%J Vladikavkazskij matematičeskij žurnal
%D 2021
%P 16-26
%V 23
%N 3
%U http://geodesic.mathdoc.fr/item/VMJ_2021_23_3_a1/
%G en
%F VMJ_2021_23_3_a1
B. P. Allahverdiev; H. Tuna. Titchmarsh–Weyl theory of the singular Hahn–Sturm–Liouville equation. Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 3, pp. 16-26. http://geodesic.mathdoc.fr/item/VMJ_2021_23_3_a1/

[1] Weyl H., “Über gewöhnlicke Differentialgleichungen mit Singuritaten und die zugehörigen Entwicklungen willkürlicher Funktionen”, Mathematische Annalen, 68:2 (1910), 220–269 | DOI | MR | Zbl

[2] Titchmarsh E. C., Eigenfunction Expansions Associated with Second-Order Differential Equations, v. I, 2nd Edition, Clarendon Press, Oxford, 1962 | MR | Zbl

[3] Levitan B. M., Sargsjan I. S., Sturm–Liouville and Dirac Operators, Mathematics and its Applications (Soviet Series), Kluwer Academic Publishers Group, Dordrecht, 1991 | DOI | MR

[4] Yosida K., “On Titchmarsh–Kodaira's Formula Concerning Weyl–Stone's Eigenfunction Expansion”, Nagoya Mathematical Journal, 1 (1950), 49–58 | DOI | MR | Zbl

[5] Yosida K., Lectures on Differential and Integral Equations, Springer, New York, 1960 | MR

[6] Levinson N., “A Simplified Proof of the Expansion Theorem for Singular Second Order Linear Differential Equations”, Duke Mathematical Journal, 18:1 (1951), 57–71 | DOI | MR | Zbl

[7] Hahn W., “Über Orthogonalpolynome, die $q$-Differenzengleichungen genügen”, Mathematische Nachrichten, 2:1–2 (1949), 4–34 | DOI | MR | Zbl

[8] Hahn W., “Ein Beitrag zur Theorie der Orthogonalpolynome”, Monatshefte für Mathematik, 95:1 (1983), 19–24 | DOI | MR | Zbl

[9] Jackson F. H., “$q$-Difference Equations”, American Journal of Mathematics, 1910, no. 32, 305–314 | DOI | MR | Zbl

[10] Álvarez-Nodarse R., “On Characterizations of Classical Polynomials”, Journal of Computational and Applied Mathematics, 196:1 (2006), 320–337 | DOI | MR

[11] Dobrogowska A., Odzijewicz A., “Second Order $q$-Difference Equations Solvable by Factorization Method”, Journal of Computational and Applied Mathematics, 193:1 (2006), 319–346 | DOI | MR | Zbl

[12] Kwon K. H., Lee D. W., Park S. B., Yoo B. H., “Hahn Class Orthogonal Polynomials”, Kyungpook Mathematical Journal, 38 (1998), 259–281 | MR | Zbl

[13] Lesky P. A., Eine Charakterisierung der klassischen kontinuierlichen-, diskreten- und $q$-Orthogonalpolynome, Shaker, Aachen, 2005 | MR | Zbl

[14] Petronilho J., “Generic Formulas for the Values at the Singular Points of Some Special Monic Classical $H_{q,\omega }$-Orthogonal Polynomials”, Journal of Computational and Applied Mathematics, 205:1 (2007), 314–324 | DOI | MR | Zbl

[15] Hamza A. E., Ahmed S. A., “Existence and Uniqueness of Solutions of Hahn Difference Equations”, Advances in Difference Equations, 316:1 (2013), 1–15 | DOI | MR

[16] Hamza A. E., Ahmed S. A., “Theory of Linear Hahn Difference Equations”, Journal of Advances in Mathematics, 4:2 (2013), 440–460 | MR

[17] Hamza A. E., Makharesh S. D., “Leibnizs Rule and Fubinis Theorem Associated with Hahn Difference Operator”, Journal of Advanced Mathematical, 12:6 (2016), 6335–6345 | DOI

[18] Sitthiwirattham T., “On a Nonlocal Bundary Value Problem for Nonlinear Second-Order Hahn Difference Equation with two Different $q,\omega$-Derivatives”, Advances in Difference Equations, 2016:1 (2016), 116 | DOI | MR | Zbl

[19] Annaby M. H., Hamza A. E., Makharesh S. D., “A Sturm–Liouville Theory for Hahn Difference Operator”, Frontiers of Orthogonal Polynomials and $q$-Series, World Scientific, Singapore, 2018, 35–84 | DOI | MR

[20] Annaby M. H., Hamza A. E., Aldwoah K. A., “Hahn Difference Operator and Associated Jackson–Nörlund Integrals”, Journal of Optimization Theory and Applications, 154:1 (2012), 133–153 | DOI | MR | Zbl

[21] Knopp K., Elements of the Theory of Functions, Dover, New York, 1952 | MR | Zbl