@article{VMJ_2021_23_3_a0,
author = {A. A. Alikhanov and A. M. Apekov and A. Kh. Khibiev},
title = {Higher-order approximation difference scheme for the generalized aller equation of fractional order},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {5--15},
year = {2021},
volume = {23},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2021_23_3_a0/}
}
TY - JOUR AU - A. A. Alikhanov AU - A. M. Apekov AU - A. Kh. Khibiev TI - Higher-order approximation difference scheme for the generalized aller equation of fractional order JO - Vladikavkazskij matematičeskij žurnal PY - 2021 SP - 5 EP - 15 VL - 23 IS - 3 UR - http://geodesic.mathdoc.fr/item/VMJ_2021_23_3_a0/ LA - ru ID - VMJ_2021_23_3_a0 ER -
%0 Journal Article %A A. A. Alikhanov %A A. M. Apekov %A A. Kh. Khibiev %T Higher-order approximation difference scheme for the generalized aller equation of fractional order %J Vladikavkazskij matematičeskij žurnal %D 2021 %P 5-15 %V 23 %N 3 %U http://geodesic.mathdoc.fr/item/VMJ_2021_23_3_a0/ %G ru %F VMJ_2021_23_3_a0
A. A. Alikhanov; A. M. Apekov; A. Kh. Khibiev. Higher-order approximation difference scheme for the generalized aller equation of fractional order. Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 3, pp. 5-15. http://geodesic.mathdoc.fr/item/VMJ_2021_23_3_a0/
[1] Samko S. G, Kilbas A. A., Marichev O. I., Fractional Integrals and Derivatives: Theory and Applications, CRC Press, Florida, 1993, 1006 pp. | MR
[2] Oldham K. B., Spanier J., The Fractional Calculus, Academic Press, N.Y., 1974, 322 pp. | MR | Zbl
[3] Podlubny I., Fractional Differential Equations, Academic Press, San Diego, 1999, 340 pp. | MR | Zbl
[4] Hilfer R., Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000, 472 pp. | MR | Zbl
[5] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006, 540 pp. | MR | Zbl
[6] Alikhanov A. A., “Boundary value problems for the diffusion equation of the variable order in differential and difference settings”, Appl. Math. Comput., 219:8 (2012), 3938–3946 | DOI | MR | Zbl
[7] Alikhanov A. A., “Numerical methods of solutions of boundary value problems for the multi-term variable-distributed order diffusion equation”, Appl. Math. Comput., 268 (2015), 12–22 | DOI | MR | Zbl
[8] Sandev T., Chechkin A., Kantz H., Metzler R., “Diffusion and Fokker–Planck–Smoluchowski equations with generalized memory kernel”, Fract. Calc. Appl. Anal., 18:4 (2015), 1006–1038 | DOI | MR | Zbl
[9] Alikhanov A. A., “A priori estimates for solutions of boundary value problems for fractional-order equations”, Differ. Equ., 46:5 (2011), 660–666 | DOI | MR
[10] Alikhanov A. A., “A new difference scheme for the time fractional diffusion equation”, J. of Comp. Phys., 280 (2015), 424–438 | DOI | MR | Zbl
[11] Alikhanov A. A., “Stability and convergence of difference schemes for boundary value problems for the fractional-order diffusion equation”, Comput. Math. and Math. Phys., 56:4 (2016), 561–575 | DOI | MR | Zbl
[12] Alikhanov A. A., “A time-fractional diffusion equation with generalized memory kernel in differential and difference settings with smooth solutions”, Comput. Methods Appl. Math., 17:4 (2017), 647–660 | DOI | MR | Zbl
[13] Alikhanov A., Beshtokov M., Mehra M., “The Crank–Nicolson type compact difference scheme for a loaded time-fractional Hallaire's equation”, Frac. Calc. Appl. Anal., 24:4 (2021), 1231–1256 | DOI | MR | Zbl
[14] Gao G. H., Alikhanov A. A., Sun Z. Z., “The temporal second order difference schemes based on the interpolation approximation for solving the time multi-term and distributed-order fractional sub-diffusion equations”, J. Sci. Comput., 73:1 (2017), 93–121 | DOI | MR | Zbl
[15] Khibiev A. Kh., “Ustoichivost i skhodimost raznostnykh skhem dlya uravneniya diffuzii diskretno-raspredelennogo poryadka s obobschennymi funktsiyami pamyati”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 23:3 (2019), 582–597 | DOI | MR | Zbl
[16] Khibiev A., Alikhanov A., Huang C., A second order difference scheme for time fractional diffusion equation with generalized memory kernel, 2021, arXiv: 2108.10596 [cs, math] | MR