Higher-order approximation difference scheme for the generalized aller equation of fractional order
Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 3, pp. 5-15 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, the first boundary value problem for the Aller equation of fractional time order with generalized memory functions was considered. For the numerical solution of the problem, two difference schemes of an increased order of approximation are constructed. In the case of variable coefficients, a second-order difference scheme of approximation is proposed, both in time and in space. A compact difference scheme of the fourth order of approximation in space and the second order in time for the generalized Aller equation with constant coefficients is proposed. A priori estimates for solutions of the mentioned difference schemes are obtained by the method of energy inequalities. Their unconditional stability and convergence are proved. It is shown that the convergence rate coincides with the order of approximation error in the case of a sufficiently smooth solution of the original problem. On the basis of the proposed algorithms, numerical calculations of test problems were carried out, confirming the obtained theoretical results. All calculations were performed using the Julia v1.5.1 programming language.
@article{VMJ_2021_23_3_a0,
     author = {A. A. Alikhanov and A. M. Apekov and A. Kh. Khibiev},
     title = {Higher-order approximation difference scheme for the generalized aller equation of fractional order},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {5--15},
     year = {2021},
     volume = {23},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2021_23_3_a0/}
}
TY  - JOUR
AU  - A. A. Alikhanov
AU  - A. M. Apekov
AU  - A. Kh. Khibiev
TI  - Higher-order approximation difference scheme for the generalized aller equation of fractional order
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2021
SP  - 5
EP  - 15
VL  - 23
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMJ_2021_23_3_a0/
LA  - ru
ID  - VMJ_2021_23_3_a0
ER  - 
%0 Journal Article
%A A. A. Alikhanov
%A A. M. Apekov
%A A. Kh. Khibiev
%T Higher-order approximation difference scheme for the generalized aller equation of fractional order
%J Vladikavkazskij matematičeskij žurnal
%D 2021
%P 5-15
%V 23
%N 3
%U http://geodesic.mathdoc.fr/item/VMJ_2021_23_3_a0/
%G ru
%F VMJ_2021_23_3_a0
A. A. Alikhanov; A. M. Apekov; A. Kh. Khibiev. Higher-order approximation difference scheme for the generalized aller equation of fractional order. Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 3, pp. 5-15. http://geodesic.mathdoc.fr/item/VMJ_2021_23_3_a0/

[1] Samko S. G, Kilbas A. A., Marichev O. I., Fractional Integrals and Derivatives: Theory and Applications, CRC Press, Florida, 1993, 1006 pp. | MR

[2] Oldham K. B., Spanier J., The Fractional Calculus, Academic Press, N.Y., 1974, 322 pp. | MR | Zbl

[3] Podlubny I., Fractional Differential Equations, Academic Press, San Diego, 1999, 340 pp. | MR | Zbl

[4] Hilfer R., Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000, 472 pp. | MR | Zbl

[5] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006, 540 pp. | MR | Zbl

[6] Alikhanov A. A., “Boundary value problems for the diffusion equation of the variable order in differential and difference settings”, Appl. Math. Comput., 219:8 (2012), 3938–3946 | DOI | MR | Zbl

[7] Alikhanov A. A., “Numerical methods of solutions of boundary value problems for the multi-term variable-distributed order diffusion equation”, Appl. Math. Comput., 268 (2015), 12–22 | DOI | MR | Zbl

[8] Sandev T., Chechkin A., Kantz H., Metzler R., “Diffusion and Fokker–Planck–Smoluchowski equations with generalized memory kernel”, Fract. Calc. Appl. Anal., 18:4 (2015), 1006–1038 | DOI | MR | Zbl

[9] Alikhanov A. A., “A priori estimates for solutions of boundary value problems for fractional-order equations”, Differ. Equ., 46:5 (2011), 660–666 | DOI | MR

[10] Alikhanov A. A., “A new difference scheme for the time fractional diffusion equation”, J. of Comp. Phys., 280 (2015), 424–438 | DOI | MR | Zbl

[11] Alikhanov A. A., “Stability and convergence of difference schemes for boundary value problems for the fractional-order diffusion equation”, Comput. Math. and Math. Phys., 56:4 (2016), 561–575 | DOI | MR | Zbl

[12] Alikhanov A. A., “A time-fractional diffusion equation with generalized memory kernel in differential and difference settings with smooth solutions”, Comput. Methods Appl. Math., 17:4 (2017), 647–660 | DOI | MR | Zbl

[13] Alikhanov A., Beshtokov M., Mehra M., “The Crank–Nicolson type compact difference scheme for a loaded time-fractional Hallaire's equation”, Frac. Calc. Appl. Anal., 24:4 (2021), 1231–1256 | DOI | MR | Zbl

[14] Gao G. H., Alikhanov A. A., Sun Z. Z., “The temporal second order difference schemes based on the interpolation approximation for solving the time multi-term and distributed-order fractional sub-diffusion equations”, J. Sci. Comput., 73:1 (2017), 93–121 | DOI | MR | Zbl

[15] Khibiev A. Kh., “Ustoichivost i skhodimost raznostnykh skhem dlya uravneniya diffuzii diskretno-raspredelennogo poryadka s obobschennymi funktsiyami pamyati”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 23:3 (2019), 582–597 | DOI | MR | Zbl

[16] Khibiev A., Alikhanov A., Huang C., A second order difference scheme for time fractional diffusion equation with generalized memory kernel, 2021, arXiv: 2108.10596 [cs, math] | MR