A note on semiderivations in prime rings and $\mathscr{C}*$-algebras
Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 2, pp. 70-77 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\mathscr{R}$ be a prime ring with the extended centroid $\mathscr{C}$ and the Matrindale quotient ring $\mathscr{Q}$. An additive mapping $\mathscr{F}:\mathscr{R}\rightarrow \mathscr{R}$ is called a semiderivation associated with a mapping $\mathscr{G}: \mathscr{R}\rightarrow \mathscr{R}$, whenever $ \mathscr{F}(xy)=\mathscr{F}(x)\mathscr{G}(y)+x\mathscr{F}(y)= \mathscr{F}(x)y+ \mathscr{G}(x)\mathscr{F}(y) $ and $ \mathscr{F}(\mathscr{G}(x))= \mathscr{G}(\mathscr{F}(x))$ holds for all $x, y \in \mathscr{R}$. In this manuscript, we investigate and describe the structure of a prime ring $\mathscr{R}$ which satisfies $\mathscr{F}(x^m\circ y^n)\in \mathscr{Z(R)}$ for all $x, y \in \mathscr{R}$, where $m,n \in \mathbb{Z}^+$ and $\mathscr{F}:\mathscr{R}\rightarrow \mathscr{R}$ is a semiderivation with an automorphism $\xi$ of $\mathscr{R}$. Further, as an application of our ring theoretic results, we discussed the nature of $\mathscr{C}^*$-algebras. To be more specific, we obtain for any primitive $\mathscr{C}^*$-algebra $\mathscr{A}$. If an anti-automorphism $ \zeta: \mathscr{A} \to \mathscr{A}$ satisfies the relation $(x^n)^\zeta+x^{n*}\in \mathscr{Z}(\mathscr{A})$ for every ${x,y}\in \mathscr{A},$ then $\mathscr{A}$ is $\mathscr{C}^{*}-\mathscr{W}_{4}$-algebra, i. e., $\mathscr{A}$ satisfies the standard identity $\mathscr{W}_4(a_1,a_2,a_3,a_4)=0$ for all $a_1,a_2,a_3,a_4\in \mathscr{A}$.
@article{VMJ_2021_23_2_a5,
     author = {M. A. Raza and N. Rehman},
     title = {A note on semiderivations in prime rings and $\mathscr{C}*$-algebras},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {70--77},
     year = {2021},
     volume = {23},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2021_23_2_a5/}
}
TY  - JOUR
AU  - M. A. Raza
AU  - N. Rehman
TI  - A note on semiderivations in prime rings and $\mathscr{C}*$-algebras
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2021
SP  - 70
EP  - 77
VL  - 23
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMJ_2021_23_2_a5/
LA  - en
ID  - VMJ_2021_23_2_a5
ER  - 
%0 Journal Article
%A M. A. Raza
%A N. Rehman
%T A note on semiderivations in prime rings and $\mathscr{C}*$-algebras
%J Vladikavkazskij matematičeskij žurnal
%D 2021
%P 70-77
%V 23
%N 2
%U http://geodesic.mathdoc.fr/item/VMJ_2021_23_2_a5/
%G en
%F VMJ_2021_23_2_a5
M. A. Raza; N. Rehman. A note on semiderivations in prime rings and $\mathscr{C}*$-algebras. Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 2, pp. 70-77. http://geodesic.mathdoc.fr/item/VMJ_2021_23_2_a5/

[1] Beidar K. I., Martindale III W. S., Mikhalev V., Rings with Generalized Identities, Pure and Applied Math., 196, Dekker, New York, 1996 | MR | Zbl

[2] Bergen J., “Derivations in Prime Ring”, Canadian Mathematical Bulletin, 26:3 (1983), 267–270 | DOI | MR | Zbl

[3] Bres̆ar M., “Semiderivations of Prime Rings”, Proceedings of the American Mathematical Society, 108:4 (1990), 859–860 | DOI | MR | Zbl

[4] Posner E. C., “Derivations in Prime Rings”, Proceedings of the American Mathematical Society, 8:6 (1957), 1093–1100 | DOI | MR

[5] Lanski C., “Differential Identities, Lie Ideals and Posner's Theorems”, Pacific Journal of Mathematics, 134:2 (1988), 275–297 | DOI | MR | Zbl

[6] Daif M. N., Bell H. E., “Remarks on Derivations on Semiprime Rings”, International Journal of Mathematics and Mathematical Sciences, 15 (1992), 863506, 2 pp. | DOI | MR

[7] Ashraf M., Rehman N., “On Commutativity of Rings with Derivations”, Results in Mathematics, 42:1–2 (2002), 3–8 | DOI | MR | Zbl

[8] Herstein I. N., “A Remark on Rings and Algebras”, Michigan Mathematical Journal, 10:3 (1963), 269–272 | DOI | MR | Zbl

[9] Bell H. E., “On the Commutativity of Prime Rings with Derivation”, Quaestiones Mathematicae, 22 (1999), 329–335 | DOI | MR | Zbl

[10] Ali S., Khan M. S., Khan A. N., Muthana N. M., “On Rings and Algebras with Derivations”, Journal of Algebra and its Applications, 15:6 (2016), 1650107, 10 pp. | DOI | MR | Zbl

[11] Ali S., Ashraf M., Raza M. A., Khan A. N., “$n$-Commuting Mappings on (Semi)-Prime Rings with Application”, Communications in Algebra, 47:5 (2019), 2262–2270 | DOI | MR | Zbl

[12] Raza M. A., Rehman N., “An Identity on Automorphisms of Lie Ideals in Prime Rings”, Annali dell'Universita' di Ferrara, 62:1 (2016), 143–150 | DOI | MR | Zbl

[13] Raza M. A., Rehman N., “On Prime and Semiprime Rings with Generalized Derivations and Non-Commutative Banach Algebras”, Proceedings–Mathematical Sciences, 126:3 (2016), 389–398 | DOI | MR | Zbl

[14] Rehman N., Raza M. A., “On $m$-Commuting Mappings with Skew Derivations in Prime Rings”, St. Petersburg Mathematical Journal, 27:4 (2016), 641–650 | DOI | MR | Zbl

[15] Huang S., “Semiderivations with Power Values on Lie Ideals in Prime Rings”, Ukrainian Mathematical Journal, 65:6 (2013), 967–971 | DOI | MR | Zbl

[16] Chuang C. L., “GPIs Having Quotients in Utumi Quotient Rings”, Proceedings of the American Mathematical Society, 103:3 (1988), 723–728 | DOI | MR | Zbl

[17] Chuang C. L., “Differential Identities with Automorphism and Anti-Automorphism-I”, Journal of Algebra, 149 (1992), 371–404 | DOI | MR | Zbl

[18] Bergen J., Herstein I. N., Kerr J. W., “Lie Ideals and Derivations of Prime Rings”, Journal of Algebra, 71 (1981), 259–267 | DOI | MR | Zbl

[19] Lanski C., Montgomery S., “Lie Structure of Prime Rings of Characteristic 2”, Pacific Journal of Mathematics, 42:1 (1972), 117–136 | DOI | MR | Zbl

[20] Jacobson N., Structure of Rings, Amer. Math. Soc. Colloq. Pub., 37, Amer. Math. Soc., Providence, RI, 1964 | MR

[21] Chuang C. L., Chou M. C., Liu C. K., “Skew Derivations with Annihilating Engel Conditions”, Publicationes Mathematicae Debrecen, 68:1–2 (2006), 161–170 | MR | Zbl

[22] Martindale 3rd W. S., “Prime Rings Satisfying a Generalized Polynomial Identity”, Journal of Algebra, 12:4 (1969), 576–584 | DOI | MR | Zbl

[23] Chuang C. L., “Differential Identities with Automorphisms and Antiautomorphisms, II”, Journal of Algebra, 160:1 (1993), 291–335 | DOI | MR

[24] Lee T. K., “Semiprime Rings with Differential Identities”, Bulletin of the Institute of Mathematics Academia Sinica, 20:1 (1992), 27–38 | MR | Zbl

[25] Chuang C. L., “The Additive Subgroup Generated by a Polynomial”, Israel Journal of Mathematics, 59:1 (1987), 98–106 | DOI | MR | Zbl

[26] Krupnik N., Roch S., Silbermann B., “On $C^*$-Algebras Generated by Idempotents”, Journal of Functional Analysis, 137:2 (1996), 303–319 | DOI | MR | Zbl

[27] Müller V., “Nil, Nilpotent and PI-Algebras”, Functional Analysis and Operator Theory, Banach Center Publications, 30, 1994, 259–265 | DOI | MR | Zbl

[28] Murphy G. J., $C^*$-Algebras and Operator Theory, Academic Press Inc., New York, 1990 | MR | Zbl