Color energy of some cluster graphs
Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 2, pp. 51-64 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $G$ be a simple connected graph. The energy of a graph $G$ is defined as sum of the absolute eigenvalues of an adjacency matrix of the graph $G$. It represents a proper generalization of a formula valid for the total $\pi$-electron energy of a conjugated hydrocarbon as calculated by the Huckel molecular orbital (HMO) method in quantum chemistry. A coloring of a graph $G$ is a coloring of its vertices such that no two adjacent vertices share the same color. The minimum number of colors needed for the coloring of a graph $G$ is called the chromatic number of $G$ and is denoted by $\chi(G)$. The color energy of a graph $G$ is defined as the sum of absolute values of the color eigenvalues of $G$. The graphs with large number of edges are referred as cluster graphs. Cluster graphs are graphs obtained from complete graphs by deleting few edges according to some criteria. It can be obtained on deleting some edges incident on a vertex, deletion of independent edges/triangles/cliques/path P3 etc. Bipartite cluster graphs are obtained by deleting few edges from complete bipartite graphs according to some rule. In this paper, the color energy of cluster graphs and bipartite cluster graphs are studied.
@article{VMJ_2021_23_2_a3,
     author = {S. D'Souza and K. P. Girija and H. J. Gowtham and P. G. Bhat},
     title = {Color energy of some cluster graphs},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {51--64},
     year = {2021},
     volume = {23},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2021_23_2_a3/}
}
TY  - JOUR
AU  - S. D'Souza
AU  - K. P. Girija
AU  - H. J. Gowtham
AU  - P. G. Bhat
TI  - Color energy of some cluster graphs
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2021
SP  - 51
EP  - 64
VL  - 23
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMJ_2021_23_2_a3/
LA  - en
ID  - VMJ_2021_23_2_a3
ER  - 
%0 Journal Article
%A S. D'Souza
%A K. P. Girija
%A H. J. Gowtham
%A P. G. Bhat
%T Color energy of some cluster graphs
%J Vladikavkazskij matematičeskij žurnal
%D 2021
%P 51-64
%V 23
%N 2
%U http://geodesic.mathdoc.fr/item/VMJ_2021_23_2_a3/
%G en
%F VMJ_2021_23_2_a3
S. D'Souza; K. P. Girija; H. J. Gowtham; P. G. Bhat. Color energy of some cluster graphs. Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 2, pp. 51-64. http://geodesic.mathdoc.fr/item/VMJ_2021_23_2_a3/

[1] Gutman I., “The Energy of a Graph”, Ber. Math. Stat. Sekt. Forschungsz. Graz., 103 (1978), 1–22 | MR

[2] Harary F., Graph Theory, Narosa Publishing House, New Delhi, 1989

[3] Adiga C., Sampathkumar E., Sriraj M. A., Shrikanth A. S., Proceedings of the Jangjeon Mathematical Society, 16 (2013), Color Energy of a Graph | MR

[4] Abreu N. M. M., Vinagre C. T. M., Bonifácio A. S., Gutman I., “The Laplacian Energy of Some Laplacian Integral Graphs”, MATCH Communications in Mathematical and in Computer Chemistry, 60:2 (2008), 447–460 | MR | Zbl

[5] Adiga C., Sampathkumar E., Sriraj M. A., “Color Energy of Unitary Cayley Graphs”, Discussiones Mathematicae Graph Theory, 34:4 (2014), 707–721 | DOI | MR | Zbl

[6] Balakrishnan R., “The Energy of a Graph”, Linear Algebra and its Applications, 387 (2004), 287–295 | DOI | MR | Zbl

[7] Balakrishnan R. B., Graphs and Matrices, Springer–Hindustan Book Agency, London, 2011

[8] Bapat R. B., Pati S., “Energy of a Graph Is Never an Odd Integer”, Bulletin of Kerala Mathematical Association, 1 (2014), 129–132 | MR

[9] Bhat P. G., D'souza S., “Color Laplacian Energy of a Graph”, Proceedings of the Jangjeon Mathematical Society, 18 (2015), 321–330 | MR | Zbl

[10] Bhat P. G., D'souza S., “Color Signless Laplacian Energy of a Graph”, AKCE International Journal of Graphs and Combinatorics, 14:2 (2017), 142–148 | DOI | MR | Zbl

[11] Gutman I., Pavlović L., “The Energy of Some Graphs with Large Number of Edges”, Bulletin of the Serbian Academy of Sciences. Mathematical and Natural Sciences Class, 118 (1999), 35–50 | MR | Zbl

[12] Walikar H. B., Ramane H. S., “Energy of Some Bipartite Cluster Graphs”, Kragujevac Journal of Science, 23 (2001), 63–74

[13] Walikar H. B., Ramane H. S., “Energy of Some Cluster Graphs”, Kragujevac Journal of Science, 23 (2001), 51–62