Variants of the hodograph method for solving a system of two quasilinear equations
Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 2, pp. 34-50 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The solution of the Cauchy problem for a system of two quasilinear homogeneous first-order partial differential equations is constructed using the hodograph method, which allows us transform the solution of quasilinear first-order partial differential equations to the solution of some second-order linear partial differential equation with variable coefficients. It is shown that various variants of the hodograph method (standard method, method based on the conservation law, and generalized hodograph method) to construct a solution to the Cauchy problem in implicit form, ultimately lead to the same result and differ only in the amount of technical work. The proof is given by calculating the Laplace invariants of the second-order linear partial differential equation in the canonical form. In the case when the equations permit an explicit connection of the initial variables with Riemann invariants and the corresponding linear equation of the hodograph method allows us to specify the explicit form of the Riemann-Green function, a method for constructing an explicit solution on the level-lines of the implicit solution is described. The Cauchy problem for a system of two quasilinear first-order partial differential equations reduces to the Cauchy problem for a certain system of ordinary differential equations. An exact implicit solution for a system of the linear degenerate equations is given as an example. All the methods presented and the method of constructing an explicit solution can be used for hyperbolic and elliptic equations. In the case of hyperbolic equations, it is possible to construct self-similar and discontinuous solutions (after adding discontinuity conditions), as well as multi-valued solutions in the spatial coordinate (if such solutions are allowed by the problem statement). Despite the fact that at the final stage of the method, the Cauchy problem for ordinary differential equations has to be solved numerically, no approximations of partial differential equations typical for the finite difference method, the finite element method, the finite volume method, etc. are used. The method is accurate in the sense that the error of calculations is related only to the accuracy of integration of ordinary differential equations.
@article{VMJ_2021_23_2_a2,
     author = {T. F. Dolgikh and M. Yu. Zhukov},
     title = {Variants of the hodograph method for solving a system of two quasilinear equations},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {34--50},
     year = {2021},
     volume = {23},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2021_23_2_a2/}
}
TY  - JOUR
AU  - T. F. Dolgikh
AU  - M. Yu. Zhukov
TI  - Variants of the hodograph method for solving a system of two quasilinear equations
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2021
SP  - 34
EP  - 50
VL  - 23
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMJ_2021_23_2_a2/
LA  - ru
ID  - VMJ_2021_23_2_a2
ER  - 
%0 Journal Article
%A T. F. Dolgikh
%A M. Yu. Zhukov
%T Variants of the hodograph method for solving a system of two quasilinear equations
%J Vladikavkazskij matematičeskij žurnal
%D 2021
%P 34-50
%V 23
%N 2
%U http://geodesic.mathdoc.fr/item/VMJ_2021_23_2_a2/
%G ru
%F VMJ_2021_23_2_a2
T. F. Dolgikh; M. Yu. Zhukov. Variants of the hodograph method for solving a system of two quasilinear equations. Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 2, pp. 34-50. http://geodesic.mathdoc.fr/item/VMJ_2021_23_2_a2/

[1] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii, Nauka, M., 1978, 668 pp. | MR

[2] Senashov S. I., Yakhno A., “Conservation laws, hodograph transformation and boundary value problems of plane plasticity”, SIGMA, 8 (2012), 16 pp. | DOI | MR | Zbl

[3] Zhukov M. Yu., Shiryaeva E. V., Dolgikh T. F., Metod godografa dlya resheniya giperbolicheskikh i ellipticheskikh kvazilineinykh uravnenii, Izd-vo YuFU, Rostov n/D., 2015, 126 pp.

[4] Tsarev S. P., “Geometriya gamiltonovykh sistem gidrodinamicheskogo tipa. Obobschennyi metod godografa”, Izv. AN SSSR. Ser. mat., 54:5 (1990), 1048–1068 | Zbl

[5] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978, 339 pp. | MR

[6] Elaeva M. S., Zhukov M. Yu., Shiryaeva E. V., “Vzaimodeistvie slabykh razryvov i metod godografa dlya zadachi o fraktsionirovanii dvukhkomponentnoi smesi elektricheskim polem”, Zhurn. vychisl. matem. i mat. fiz., 56:8 (2016), 1455–1469 | DOI | MR | Zbl

[7] Shiryaeva E. V., Zhukov M. Yu., Hodograph Method and Numerical Integration of Two Hyperbolic Quasilinear Equations. Part I. The Shallow Water Equations, 2014, 19 pp., arXiv: 1410.2832

[8] Shiryaeva E. V., Zhukov M. Yu., Hodograph Method and Numerical Integration of Two Quasilinear Hyperbolic Equations. Part II. The Zonal Electrophoresis Equations, 2014, 23 pp., arXiv: 1503.01762

[9] Shiryaeva E. V., Zhukov M. Yu., Hodograph Method and Numerical Integration of Two Quasilinear Hyperbolic Equations. Part III. Two-Beam Reduction of the Dense Soliton Gas Equations, 2015, 22 pp., arXiv: 1512.06710 | Zbl

[10] Dolgikh T. F., “Zadacha ob oprokinutoi melkoi vode”, Sovremennye problemy mekhaniki sploshnoi sredy, cb. tr. XX Mezhdunar. konf., v. I, Izd-vo YuFU, Rostov n/D, 2020, 94–98

[11] Kurant R., Uravneniya s chastnymi proizvodnymi, Mir, M., 1964, 830 pp.

[12] Copson E. T., “On the Riemann-Green function”, Arch. Ration. Mech. Anal., 1 (1958), 324–348 | DOI | MR | Zbl

[13] Zeitsch P. J., “On the Riemann function”, Mathematics., 6 (2018), 316 | DOI | Zbl

[14] Ibragimov N. Kh., “Gruppovoi analiz obyknovennykh differentsialnykh uravnenii i printsip invariantnosti v matematicheskoi fizike (k 150-letiyu so dnya rozhdeniya Sofusa Li)”, Uspekhi mat. nauk, 47:4(286) (1992), 83–144 | MR | Zbl

[15] Daggit E. A., “The use of infinitesimal transformations in predicting the form of the Riemann (-Green) function”, J. Math. Anal. Appl., 29:1 (1970), 91–108 | DOI | MR | Zbl

[16] Bautin N. N., Leontovich E. A., Metody i priemy kachestvennogo issledovaniya dinamicheskikh sistem na ploskosti, 2-e izd., dop., Nauka, gl. red. fiz.-mat. lit., M., 1990, 488 pp.

[17] El G. A., Kamchatnov A. M., “Kinetic equation for a dense soliton gas”, Phys. Rev. Lett., 95:20 (2005), 204101 | DOI

[18] Peng Y.-J., “Explicit solutions for $2 \times 2$ linearly degenerate systems”, Appl. Math. Lett., 11:5 (1998), 75–78 | DOI | MR | Zbl

[19] Senashov S. I., Filyushina E. V., Gomonova O. V., “Postroenie uprugo-plasticheskikh granits s pomoschyu zakonov sokhraneniya”, Vestn. SibGAU, 16:2, 343–359

[20] Curro C., Oliveri F., “Reduction of nonhomogeneous quasilinear $2\times 2$ systems to homogeneous and autonomous form”, J. Math. Phys., 49 (2008), 103504 | DOI | MR | Zbl

[21] Kuznetsov N. N., “Nekotorye matematicheskie voprosy khromatografii”, Vychislit. metody i programmirovanie, 1967, no. 6, 242–258

[22] Ferapontov E. V., Tsarev S. P., “Sistemy gidrodinamicheskogo tipa, voznikayuschie v gazovoi khromatografii. Invarianty Rimana i tochnye resheniya”, Mat. modelirovanie, 3:2 (1991), 82–91 | MR | Zbl

[23] Ovsyannikov L. V., “Modeli dvukhsloinoi «melkoi vody»”, Prikl. mekh. i tekhn. fizika, 20:2 (1979), 3–14

[24] Ovsyannikov L. V., Makarenko N. I., Nalimov V. I. i dr., Nelineinye problemy teorii poverkhnostnykh i vnutrennikh voln, Nauka, Sib. otd., Novosibirsk, 1985, 319 pp. | MR

[25] Ivanov S. K., Kamchatnov A. M., “Collision of rarefaction waves in Bose–Einstein condensates”, Phys. Rev. A, 99 (2019), 013609, 5 pp. | DOI

[26] Zhdanov B. A., Trubnikov S. K., Kvaziustoichivye gazovye sredy, Nauka, M., 1991, 176 pp.