Erasing of singularities of functions with zero integrals over disks
Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 2, pp. 19-33 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\mathcal{M}$ and $\mathcal{N}$ be manifolds, let ${\mathcal{D}}$ be a domain in $\mathcal{M}$, and let $E \subset \mathcal{D}$ be a set closed with respect to $\mathcal{D}$. The singularity erasure problem is as follows: find conditions under which any mapping $f:\mathcal{D}\setminus E\rightarrow\mathcal{N}$ from a given class admits a class preserving extension to a mapping $\mathbf{f}: \mathcal{D}\rightarrow \mathcal{N}$. If the indicated extension exists, then the set $E$ is called a removable set in the considered class of mappings. The purpose of this article is to study the singularity erasure problem in the context of the properties of the kernel of the local Pompeiu transform. We study the class $\mathfrak{K}_{+}$ consisting of continuous functions on the complex plane $ \mathbb{C}$ having zero integrals over all circles from $\mathbb{C}$ congruent to the unit disk with respect to the spherical metric. An analogue of the group of Euclidean motions in this case is the group of linear fractional transformations $\mathrm{PSU}(2)$. An exact condition is found under which the functions of the class in question appropriately defined at the infinity have this property on the extended complex plane $\overline{\mathbb{C}}$. The proof of the main result is based on an appropriate description of the class $\mathfrak{K}_{+}$. The central tool in this description is the Fourier series in spherical harmonics. It is shown that the Fourier coefficients of the function $f\in\mathfrak{K}_{+}$ are representable by series in Jacobi functions. The further proof consists in studying the asymptotic behavior of the indicated series when approaching a singular point. The results obtained in this article can be used to solve problems related to spherical means.
@article{VMJ_2021_23_2_a1,
     author = {N. P. Volchkova and Vit. V. Volchkov and N. A. Ischenko},
     title = {Erasing of singularities of functions with zero integrals over disks},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {19--33},
     year = {2021},
     volume = {23},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2021_23_2_a1/}
}
TY  - JOUR
AU  - N. P. Volchkova
AU  - Vit. V. Volchkov
AU  - N. A. Ischenko
TI  - Erasing of singularities of functions with zero integrals over disks
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2021
SP  - 19
EP  - 33
VL  - 23
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMJ_2021_23_2_a1/
LA  - ru
ID  - VMJ_2021_23_2_a1
ER  - 
%0 Journal Article
%A N. P. Volchkova
%A Vit. V. Volchkov
%A N. A. Ischenko
%T Erasing of singularities of functions with zero integrals over disks
%J Vladikavkazskij matematičeskij žurnal
%D 2021
%P 19-33
%V 23
%N 2
%U http://geodesic.mathdoc.fr/item/VMJ_2021_23_2_a1/
%G ru
%F VMJ_2021_23_2_a1
N. P. Volchkova; Vit. V. Volchkov; N. A. Ischenko. Erasing of singularities of functions with zero integrals over disks. Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 2, pp. 19-33. http://geodesic.mathdoc.fr/item/VMJ_2021_23_2_a1/

[1] Pompeiu D., “Sur une propriété intégrale des fonctions de deux variables réeles”, Bull. Cl. Sci. Acad. Royale de Belgique (5), 15 (1929), 265–269 | Zbl

[2] Chakalov L., “Sur un problème de D. Pompeiu”, Annuaire Godišnik Univ. Sofia Fac. Phys.-Math., Livre 1, 40 (1944), 1–44

[3] Radon J., “Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten”, Ber. Verh. Sächs. Akad. Wiss. Leipzig. Math.-Natur. Kl., 69 (1917), 262–277 | Zbl

[4] Volchkov V. V., Volchkov Vit. V., Offbeat Integral Geometry on Symmetric Spaces, Birkhäuser, Basel, 2013, 592 pp. | DOI | MR | Zbl

[5] Volchkov V. V., Integral Geometry and Convolution Equations, Kluwer Acad. Publ., Dordrecht, 2003, xii+454 pp. | DOI | MR | Zbl

[6] Zalcman L., “A bibliographic survey of the Pompeiu problem”, Approximation by Solutions of Partial Differential Equations, Kluwer Acad. Publ., Dordrecht, 1992, 185–194 | DOI | MR

[7] Berenstein K. A., Struppa D., “Kompleksnyi analiz i uravneniya v svertkakh”, Itogi nauki i tekhn. Ser. Sovrem. probl. matem. Fundam. napravleniya, 54, VINITI, M., 1989, 5–111

[8] Zalcman L., “Supplementary bibliography to “A bibliographic survey of the Pompeiu problem””, Contemp. Math. Radon Transform and Tomography, 278 (2001), 69–74 | DOI | MR | Zbl

[9] Volchkov V. V., Volchkov Vit. V., Harmonic Analysis of Mean Periodic Functions on Symmetric Spaces and the Heisenberg Group, Springer, London, 2009, 672 pp. | MR | Zbl

[10] Ion F., Ploskie volny i sfericheskie srednie v primenenii k differentsialnym uravneniyam s chastnymi proizvodnymi, Izd-vo inostr. lit-ry, M., 1958, 158 pp.

[11] Smith J. D., “Harmonic analysis of scalar and vector fields in $\mathbb R^n$”, Math. Proc. Camb. Philos. Soc., 72:3 (1972), 403–416 | DOI | MR | Zbl

[12] Rawat R., Sitaram A., “The injectivity of the Pompeiu transform and $L^p$-analogues of the Wiener Tauberian theorem”, Israel J. Math., 91 (1995), 307–316 | DOI | MR | Zbl

[13] Thangavelu S., “Spherical means and $\mathrm{CR}$ functions on the Heisenberg group”, J. Analyse Math., 63:1 (1994), 255–286 | DOI | MR | Zbl

[14] Ungar P., “Freak theorem about functions on a sphere”, J. London Math. Soc., s1–29:1 (1954), 100–103 | DOI | MR | Zbl

[15] Schneider R., “Functions on a sphere with vanishing integrals over certain subspheres”, J. Math. Anal. Appl., 26:2 (1969), 381–384 | DOI | MR | Zbl

[16] Delsarte J., “Note sur une propriété nouvelle des fonctions harmoniques”, C. R. Acad. Sci. Paris Ser. A–B, 246 (1958), 1358–1360 | MR | Zbl

[17] Netuka I., Vesely J., “Mean value property and harmonic functions”, Classical and Modern Potential Theory and Applications, Kluwer Acad. Publ., Dordrecht, 1994, 359–398 | DOI | MR | Zbl

[18] Volchkov V. V., “Reshenie problemy nositelya dlya nekotorykh klassov funktsii”, Mat. sb., 188:9 (1997), 13–30 | DOI | MR | Zbl

[19] Berenstein C. A., Gay R., Yger A., “Inversion of the local Pompeiu transform”, J. Analyse Math., 54:1 (1990), 259–287 | DOI | MR | Zbl

[20] Berkani M., Harchaoui M. El., Gay R., “Inversion de la transformation de Pompéiu locale dans l'espace hyperbolique quaternique — Cas des deux boules”, Complex Variables, Theory and Application: An International Journal, 43:1 (2000), 29–57 | DOI | MR | Zbl

[21] Volchkov Vit. V., Volchkova N. P., “Obraschenie lokalnogo preobrazovaniya Pompeiyu na kvaternionnom giperbolicheskom prostranstve”, Dokl. RAN, 379:5 (2001), 587–590 | MR | Zbl

[22] Volchkov Vit. V., Volchkova N. P., “Teoremy ob obraschenii lokalnogo preobrazovaniya Pompeiyu na kvaternionnom giperbolicheskom prostranstve”, Algebra i analiz, 15:5 (2003), 169–197

[23] Volchkov V. V., Volchkov Vit. V., “Interpolyatsionnye zadachi dlya funktsii s nulevymi integralami po sharam fiksirovannogo radiusa”, Dokl. RAN. Matematika, informatika, protsessy upravleniya, 490:1 (2020), 20–23 | DOI | Zbl

[24] Postnikov M. M., Analiticheskaya geometriya, Nauka, M., 1986, 416 pp. | MR

[25] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, v. 1, Gipergeometricheskaya funktsiya. Funktsii Lezhandra, Nauka, M., 1973, 296 pp.

[26] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady. Dopolnitelnye glavy, Nauka, M., 1986, 800 pp. | MR

[27] Volchkov Vit. V., “O funktsiyakh s nulevymi sharovymi srednimi na kompaktnykh dvukhtochechno-odnorodnykh prostranstvakh”, Mat. sb., 198:4 (2007), 21–46 | DOI