On the conditions for the embedding of classes of Besicovitch almost periodic functions
Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 1, pp. 88-98
Voir la notice de l'article provenant de la source Math-Net.Ru
In the
paper we established some conditions for embedding of
classes of $B_q$-almost-periodic functions into the classes of
$B_p$-almost-periodic in the sense of Besicovitch functions with
arbitrary Fourier exponents for ${1\leq p$. Some of
established conditions are counterparts of the known results of
other authors on embedding of the classes $L_p$ $(1\leq p\infty)$
of periodic functions. As a structural characteristic of such
functions we use a higher-order modulus of smoothness with a
predetermined step. Since the space of almost periodic Besicovitch
functions is a complete normed space, the Bochner–Fejer polynomials
are used as polynomials of best approximation. We also indicate some
conditions for the Besicovitch functions to belong to the class of
entire functions of bounded degree. It is established that if a
$B_p$-almost periodic $f(x)\in B_p$ has the best approximation value
by entire functions of bounded degree, then there exists the
absolutely continuous derivative of the function which is also
$B_p$-almost periodic.
@article{VMJ_2021_23_1_a7,
author = {Yu. Kh. Khasanov},
title = {On the conditions for the embedding of classes of {Besicovitch} almost periodic functions},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {88--98},
publisher = {mathdoc},
volume = {23},
number = {1},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2021_23_1_a7/}
}
TY - JOUR AU - Yu. Kh. Khasanov TI - On the conditions for the embedding of classes of Besicovitch almost periodic functions JO - Vladikavkazskij matematičeskij žurnal PY - 2021 SP - 88 EP - 98 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMJ_2021_23_1_a7/ LA - ru ID - VMJ_2021_23_1_a7 ER -
Yu. Kh. Khasanov. On the conditions for the embedding of classes of Besicovitch almost periodic functions. Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 1, pp. 88-98. http://geodesic.mathdoc.fr/item/VMJ_2021_23_1_a7/