On the conditions for the embedding of classes of Besicovitch almost periodic functions
Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 1, pp. 88-98 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper we established some conditions for embedding of classes of $B_q$-almost-periodic functions into the classes of $B_p$-almost-periodic in the sense of Besicovitch functions with arbitrary Fourier exponents for ${1\leq p. Some of established conditions are counterparts of the known results of other authors on embedding of the classes $L_p$ $(1\leq p<\infty)$ of periodic functions. As a structural characteristic of such functions we use a higher-order modulus of smoothness with a predetermined step. Since the space of almost periodic Besicovitch functions is a complete normed space, the Bochner–Fejer polynomials are used as polynomials of best approximation. We also indicate some conditions for the Besicovitch functions to belong to the class of entire functions of bounded degree. It is established that if a $B_p$-almost periodic $f(x)\in B_p$ has the best approximation value by entire functions of bounded degree, then there exists the absolutely continuous derivative of the function which is also $B_p$-almost periodic.
@article{VMJ_2021_23_1_a7,
     author = {Yu. Kh. Khasanov},
     title = {On the conditions for the embedding of classes of {Besicovitch} almost periodic functions},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {88--98},
     year = {2021},
     volume = {23},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2021_23_1_a7/}
}
TY  - JOUR
AU  - Yu. Kh. Khasanov
TI  - On the conditions for the embedding of classes of Besicovitch almost periodic functions
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2021
SP  - 88
EP  - 98
VL  - 23
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMJ_2021_23_1_a7/
LA  - ru
ID  - VMJ_2021_23_1_a7
ER  - 
%0 Journal Article
%A Yu. Kh. Khasanov
%T On the conditions for the embedding of classes of Besicovitch almost periodic functions
%J Vladikavkazskij matematičeskij žurnal
%D 2021
%P 88-98
%V 23
%N 1
%U http://geodesic.mathdoc.fr/item/VMJ_2021_23_1_a7/
%G ru
%F VMJ_2021_23_1_a7
Yu. Kh. Khasanov. On the conditions for the embedding of classes of Besicovitch almost periodic functions. Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 1, pp. 88-98. http://geodesic.mathdoc.fr/item/VMJ_2021_23_1_a7/

[1] Besicovitch A., Almost Periodic Functions, Cambridge Univ. Press, 1932 | MR

[2] Besicovitch A., “Almost periodicity and generalized trigonometric series”, Acta Math., 57 (1931), 203–292 | DOI | MR

[3] Levitan B. M., Almost Periodic Functions, GITTL, M., 1953 (in Russian) | MR

[4] Timan M. F., Khasanov Yu. Kh., “Approximations of Almost Periodic Functions by Entire Ones”, Russian Mathematics (Izvestiya VUZ. Matematika), 55 (2011), 52–57 | DOI | MR | Zbl

[5] Konushkov A. A., “Best Approximations by Trigonometric Polynomials and Fourier Coefficients”, Sbornik: Mathematics, 44(86):1 (1958), 53–84 (in Russian) | MR

[6] Nikol'skii S. M., Approximation of Functions of Several Variables and Imbedding Theorems, Springer-Verlag, Berlin–Heidelberg, 1977 | DOI | MR

[7] Khasanov Yu. Kh., “About Relationship Between Summability of Almost Periodic Functions and Fouriers Coefficients”, Vladikavkaz Math. J., 16:3 (2014), 47–54 (in Russian) | DOI | MR | Zbl

[8] Timan A. F., Theory of Approximation of Functions of a Real Variable, Pergamon Press, 1963 | MR | Zbl

[9] Khasanov Yu. Kh., “Absolute Convergence of Fourier Series of Almost-Periodic Functions”, Mathematical Notes, 94 (2013), 692–702 | DOI | DOI | MR | Zbl