Nonlinear viscosity algorithm with perturbation for
Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 1, pp. 60-76 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The viscosity iterative algorithms for finding a common element of the set of fixed points for nonlinear operators and the set of solutions of variational inequality problems have been investigated by many authors. The viscosity technique allow us to apply this method to convex optimization, linear programming and monoton inclusions. In this paper, based on viscosity technique with perturbation, we introduce a new nonlinear viscosity algorithm for finding an element of the set of fixed points of nonexpansive multi-valued mappings in a Hilbert spaces. Furthermore, strong convergence theorems of this algorithm were established under suitable assumptions imposed on parameters. Our results can be viewed as a generalization and improvement of various existing results in the current literature. Moreover, some numerical examples that show the efficiency and implementation of our algorithm are presented.
@article{VMJ_2021_23_1_a5,
     author = {H. R. Sahebi},
     title = {Nonlinear viscosity algorithm with perturbation for},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {60--76},
     year = {2021},
     volume = {23},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2021_23_1_a5/}
}
TY  - JOUR
AU  - H. R. Sahebi
TI  - Nonlinear viscosity algorithm with perturbation for
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2021
SP  - 60
EP  - 76
VL  - 23
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMJ_2021_23_1_a5/
LA  - en
ID  - VMJ_2021_23_1_a5
ER  - 
%0 Journal Article
%A H. R. Sahebi
%T Nonlinear viscosity algorithm with perturbation for
%J Vladikavkazskij matematičeskij žurnal
%D 2021
%P 60-76
%V 23
%N 1
%U http://geodesic.mathdoc.fr/item/VMJ_2021_23_1_a5/
%G en
%F VMJ_2021_23_1_a5
H. R. Sahebi. Nonlinear viscosity algorithm with perturbation for. Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 1, pp. 60-76. http://geodesic.mathdoc.fr/item/VMJ_2021_23_1_a5/

[1] Ceng L. C., Yao J. C., “Hybrid Viscosity Approximation Schemes for Equilibrium Problems and Fixed Point Problems of Infinitely Many Nonexpansive Mappings”, Applied Mathematics and Computation, 198 (2008), 729–741 | DOI | MR | Zbl

[2] Hussain N., Khan A. R., “Applications of the Best Approximation Operator to $\ast$-Nonexpansive Maps in Hilbert Spaces”, Numerical Functional Analysis and Optimization, 24 (2003), 327–338 | DOI | MR | Zbl

[3] Peng J.-W., Liou Y.-C., Yao J.-C., “An Iterative Algorithm Combining Viscosity Method with Parallel Method for a Generalized Equilibrium Problem and Strict Pseudocontractions”, Fixed Point Theory and Applications, 2009, 794178 | DOI | MR | Zbl

[4] Tada A., Takahashi W., “Weak and Strong Convergence Theorems for a Nonexpansive Mapping and an Equilibrium Problem”, Journal of Optimization Theory and Applications, 133 (2007), 359–370 | DOI | MR | Zbl

[5] Takahashi S., Takahashi W., “Viscosity Approximation Method for Equilibrium and Fixed Point Problems in Hilbert Space”, Journal of Mathematical Analysis and Applications, 331:1 (2007), 506–515 | DOI | MR | Zbl

[6] Ceng L. C., Hui-Ying Hu, Wong M. M., “Strong and Weak Convergence Theorems for Generalized Mixed Equilibrium Problem with Perturbation and Fixed Point Problem of Infinitely Many Nonexpansive Mappings”, Taiwanese Journal of Mathematics, 15:3 (2011), 1341–1367 | DOI | MR | Zbl

[7] Blum E., Oettli W., “From Optimization and Variational Inequalities to Equilibrium Problems”, Math. Stud., 63, 1994, 123–145 | MR | Zbl

[8] Ceng L. C., Al-Homidan S., Ansari Q. H., Yao J. C., “An Iterative Scheme for Equilibrium Problems and Fixed Point Problems of Strict Pseudo-Contraction Mappings”, Journal of Computational and Applied Mathematics, 223 (2009), 967–974 | DOI | MR | Zbl

[9] Taherian M., Azhini M., “Strong Convergence Theorems for Fixed Point Problem of Infinite Family of non Self Mapping and Generalized Equilibrium Problems with Perturbation in Hilbert Spaces”, Advances and Applications in Mathematical Sciences, 15:2 (2016), 25–51 | MR

[10] Takahashi S., Takahashi W., “Strong Convergence Theorem for a Generalized Equilibrium Problem and a Nonexpansive Mapping in a Hilbert Space”, Nonlinear Analysis: Theory, Methods and Applications, 69:3 (2008), 1025–1033 | DOI | MR | Zbl

[11] Sahebi H. R., Cheragh M., Azhini M., “A Viscosity Iterative Algorithm Technique for Solving a General Equilibrium Problem System”, Tamkang Journal of Mathematics, 50:4 (2019), 391–408 | DOI | MR | Zbl

[12] Sahebi H. R., Razani A., “A Solution of a General Equilibrium Problem”, Acta Mathematica Scientia, 33:6 (2013), 1598–1614 | DOI | MR | Zbl

[13] Sahebi H. R., Razani A., “An Iterative Algorithm for Finding the Solution of a General e Quilibrium Problem System”, Filomat, 28:7 (2014), 1393–1415 | DOI | MR | Zbl

[14] Sahebi H. R., Ebrahimi S., “An Explicit Viscosity Iterative Algorithm for Finding the Solutions of a General Equilibrium Problem Systems”, Tamkang Journal of Mathematics, 46:3 (2015), 193–216 | DOI | MR | Zbl

[15] Sahebi H. R., Ebrahimi S., “A Viscosity Iterative Algorithm for the Optimization Problem System”, Filomat, 8 (2017), 2249–2266 | DOI | MR

[16] Assad N. A., Kirk W. A., “Fixed Point Theorems for Set-Valued Mappings of Contractive Type”, Pacific Journal of Mathematics, 43 (1972), 553–562 | DOI | MR

[17] Pietramala P., “Convergence of Approximating Fixed Points Sets for Multivalued Nonexpansive Mappings”, Commentationes Mathematicae Universitatis Carolinae, 32 (1991), 697–701 | MR | Zbl

[18] Shahzad N., Zegeye H., “On Mann and Ishikawa Iteration Schemes for Multi-Valued Maps in Banach Spaces”, Nonlinear Analysis: Theory, Methods and Applications, 71:3–4 (2009), 838–844 | DOI | MR | Zbl

[19] Song Y., Wang H., “Convergence of Iterative Algorithms for Multivalued Mappings in Banach Spaces”, Nonlinear Analysis: Theory, Methods and Applications, 70:4 (2009), 1547–1556 | DOI | MR | Zbl

[20] Opial Z., “Weak Convergence of the Sequence of Successive Approximations for Nonexpansive Mappings”, Bulletin of the American Mathematical Society, 73:4 (1967), 591–597 | DOI | MR | Zbl

[21] Agarwal R. P., O'Regan D., Sahu D. R., Fixed Point Theory for Lipschitzian-Type Mappings with Applications, Springer, 2009 | DOI | MR | Zbl

[22] Chang S. S., Lee J. H., Chan W., “An New Method for Solving Equilibrium Problem, Fixed Point Problem and Variational Inequality Problem with Application to Optimization”, Nonlinear Analysis: Theory, Methods and Applications, 70 (2009), 3307–3319 | DOI | MR | Zbl

[23] Cholamjiak W., Suantai S. A., “Hybrid Method for a Countable Family of Multivalued Maps, Equilibrium Problems, and Variational Inequality Problems”, Discrete Dynamics in Nature and Society, 2010 (2010), 349158, 14 pp. | DOI | MR | Zbl

[24] Cianciaruso F., Marino G., Muglia L., Yao Y., “A Hybrid Projection Algorithm for Finding Solutions of Mixed Equilibrium Problem and Variational Inequality Problem”, Fixed Point Theory and Algorithms for Sciences and Engineering, 2010 (2009), 383740 | DOI | MR

[25] Combettes P. L., Hirstoaga A., “Equilibrium Programming in Hilbert Space”, Journal of Nonlinear and Convex Analysis, 6 (2005), 117–136 | MR | Zbl

[26] Marino G., Xu H. K., “A General Iterative Method for Nonexpansive Mappings in Hilbert Spaces”, Journal of Mathematical Analysis and Applications, 318 (2006), 43–52 | DOI | MR | Zbl

[27] Marino G., Xu H. K., “Weak and Strong Convergence Theorems for Strict Pseudocontractions in Hilbert Spaces”, Journal of Mathematical Analysis and Applications, 329 (2007), 336–346 | DOI | MR | Zbl

[28] Takahashi W., Nonlinear Functional Analysis, Fixed Point Theory and Its Application, Yokohama Publ, Japan, 2000 | MR

[29] Suzuki T., “Strong Convergence of Krasnoselskii and Mann's Type Sequences for one Parameter Nonexpansive Semigroups without Bochner Integrals”, Journal of Mathematical Analysis and Applications, 305:1 (2005), 227–239 | DOI | MR | Zbl

[30] Xu H.-K., “Viscosity Approximation Methods for Nonexpansive Mappings”, Journal of Mathematical Analysis and Applications, 298:1 (2004), 279–291 | DOI | MR

[31] Cholamjiak P., Cholamjiak W., Suantai S., “Viscosity Approximation Methods for Nonexpansive Multi-Valued Nonself Mapping and Equilibrium Problems”, Demonstratio Mathematica, 47 (2014), 382–395 | DOI | MR | Zbl