Nonlinear viscosity algorithm with perturbation for
Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 1, pp. 60-76

Voir la notice de l'article provenant de la source Math-Net.Ru

The viscosity iterative algorithms for finding a common element of the set of fixed points for nonlinear operators and the set of solutions of variational inequality problems have been investigated by many authors. The viscosity technique allow us to apply this method to convex optimization, linear programming and monoton inclusions. In this paper, based on viscosity technique with perturbation, we introduce a new nonlinear viscosity algorithm for finding an element of the set of fixed points of nonexpansive multi-valued mappings in a Hilbert spaces. Furthermore, strong convergence theorems of this algorithm were established under suitable assumptions imposed on parameters. Our results can be viewed as a generalization and improvement of various existing results in the current literature. Moreover, some numerical examples that show the efficiency and implementation of our algorithm are presented.
@article{VMJ_2021_23_1_a5,
     author = {H. R. Sahebi},
     title = {Nonlinear viscosity algorithm with perturbation for},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {60--76},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2021_23_1_a5/}
}
TY  - JOUR
AU  - H. R. Sahebi
TI  - Nonlinear viscosity algorithm with perturbation for
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2021
SP  - 60
EP  - 76
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2021_23_1_a5/
LA  - en
ID  - VMJ_2021_23_1_a5
ER  - 
%0 Journal Article
%A H. R. Sahebi
%T Nonlinear viscosity algorithm with perturbation for
%J Vladikavkazskij matematičeskij žurnal
%D 2021
%P 60-76
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2021_23_1_a5/
%G en
%F VMJ_2021_23_1_a5
H. R. Sahebi. Nonlinear viscosity algorithm with perturbation for. Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 1, pp. 60-76. http://geodesic.mathdoc.fr/item/VMJ_2021_23_1_a5/