Topological lattice rings with the $AM$-property
Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 1, pp. 20-31

Voir la notice de l'article provenant de la source Math-Net.Ru

Motivated by the recent definition of the $AM$-property in locally solid vector lattices [O. Zabeti, doi: 10.1007/s41980-020-00458-7], in this note, we try to investigate some counterparts of those results in the category of all locally solid lattice rings. In fact, we characterize locally solid lattice rings in which order bounded sets and bounded sets agree. Furthermore, with the aid of the $AM$-property, we find conditions under which order bounded group homomorphisms and different types of bounded group homomorphisms coincide. Moreover, we show that each class of bounded order bounded group homomorphisms on a locally solid lattice ring $X$ has the Lebesgue or the Levi property if and only if so is $X$.
@article{VMJ_2021_23_1_a2,
     author = {O. Zabeti},
     title = {Topological lattice rings with the $AM$-property},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {20--31},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2021_23_1_a2/}
}
TY  - JOUR
AU  - O. Zabeti
TI  - Topological lattice rings with the $AM$-property
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2021
SP  - 20
EP  - 31
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2021_23_1_a2/
LA  - en
ID  - VMJ_2021_23_1_a2
ER  - 
%0 Journal Article
%A O. Zabeti
%T Topological lattice rings with the $AM$-property
%J Vladikavkazskij matematičeskij žurnal
%D 2021
%P 20-31
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2021_23_1_a2/
%G en
%F VMJ_2021_23_1_a2
O. Zabeti. Topological lattice rings with the $AM$-property. Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 1, pp. 20-31. http://geodesic.mathdoc.fr/item/VMJ_2021_23_1_a2/