Topological lattice rings with the $AM$-property
Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 1, pp. 20-31 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Motivated by the recent definition of the $AM$-property in locally solid vector lattices [O. Zabeti, doi: 10.1007/s41980-020-00458-7], in this note, we try to investigate some counterparts of those results in the category of all locally solid lattice rings. In fact, we characterize locally solid lattice rings in which order bounded sets and bounded sets agree. Furthermore, with the aid of the $AM$-property, we find conditions under which order bounded group homomorphisms and different types of bounded group homomorphisms coincide. Moreover, we show that each class of bounded order bounded group homomorphisms on a locally solid lattice ring $X$ has the Lebesgue or the Levi property if and only if so is $X$.
@article{VMJ_2021_23_1_a2,
     author = {O. Zabeti},
     title = {Topological lattice rings with the $AM$-property},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {20--31},
     year = {2021},
     volume = {23},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2021_23_1_a2/}
}
TY  - JOUR
AU  - O. Zabeti
TI  - Topological lattice rings with the $AM$-property
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2021
SP  - 20
EP  - 31
VL  - 23
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMJ_2021_23_1_a2/
LA  - en
ID  - VMJ_2021_23_1_a2
ER  - 
%0 Journal Article
%A O. Zabeti
%T Topological lattice rings with the $AM$-property
%J Vladikavkazskij matematičeskij žurnal
%D 2021
%P 20-31
%V 23
%N 1
%U http://geodesic.mathdoc.fr/item/VMJ_2021_23_1_a2/
%G en
%F VMJ_2021_23_1_a2
O. Zabeti. Topological lattice rings with the $AM$-property. Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 1, pp. 20-31. http://geodesic.mathdoc.fr/item/VMJ_2021_23_1_a2/

[1] Hong L., “Locally Solid Topological Lattice-Ordered Groups”, Archivum Mathematicum, 51:2 (2015), 107–128 | DOI | MR | Zbl

[2] Johnson D. G., “A Structure Theory for a Class of Lattice-Ordered Rings”, Acta Mathematica, 104:3–4 (1960), 163–215 | DOI | MR | Zbl

[3] Mirzavaziri M., Zabeti O., “Topological Rings of Bounded and Compact Group Homomorphisms on a Topological Ring”, Journal of Advanced Research in Pure Mathematics, 3:2 (2011), 100–106 | DOI | MR

[4] Zabeti O., “Lattice Structure on Bounded Homomorphisms between Topological Lattice Rings”, Vladikavkaz Mathematical Journal, 21:3 (2019), 14–21 | DOI | MR | Zbl

[5] Zabeti O., “$AM$-Property in Locally Solid Vector Lattices and Applications”, Bulletin of the Iranian Mathematical Society, 2020 | DOI

[6] Zabeti O., “A Few Remarks on Bounded Homomorphisms Acting on Topological Lattice Groups and Topological Rings”, Filomat, 34:9 (2020), 2897–2905 | DOI | MR

[7] Zabeti O., “A Few Remarks on Boundedness in Topological Modules and Topological Groups”, Hacettepe Journal of Mathematics and Statistics, 48:2 (2019), 420–426 | DOI | MR

[8] Husain T., Introduction to Topological Groups, W. B. Saunders Company, 1966 | MR | Zbl

[9] Kocinac Lj. D. R., Zabeti O., “Topological Groups of Bounded Homomorphisms on a Topological Group”, Filomat, 30:3 (2016), 541–546 | DOI | MR | Zbl

[10] Aliprantis C. D., Burkinshaw O., Positive Operators, 2nd edition, Springer, 2006 | Zbl