@article{VMJ_2021_23_1_a1,
author = {B. Belhadji and A. Beniani and Kh. Zennir},
title = {Blow-up result for a class of wave $p${-Laplace} equation with nonlinear dissipation in $\mathbb{R}^{n}$},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {11--19},
year = {2021},
volume = {23},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2021_23_1_a1/}
}
TY - JOUR
AU - B. Belhadji
AU - A. Beniani
AU - Kh. Zennir
TI - Blow-up result for a class of wave $p$-Laplace equation with nonlinear dissipation in $\mathbb{R}^{n}$
JO - Vladikavkazskij matematičeskij žurnal
PY - 2021
SP - 11
EP - 19
VL - 23
IS - 1
UR - http://geodesic.mathdoc.fr/item/VMJ_2021_23_1_a1/
LA - en
ID - VMJ_2021_23_1_a1
ER -
%0 Journal Article
%A B. Belhadji
%A A. Beniani
%A Kh. Zennir
%T Blow-up result for a class of wave $p$-Laplace equation with nonlinear dissipation in $\mathbb{R}^{n}$
%J Vladikavkazskij matematičeskij žurnal
%D 2021
%P 11-19
%V 23
%N 1
%U http://geodesic.mathdoc.fr/item/VMJ_2021_23_1_a1/
%G en
%F VMJ_2021_23_1_a1
B. Belhadji; A. Beniani; Kh. Zennir. Blow-up result for a class of wave $p$-Laplace equation with nonlinear dissipation in $\mathbb{R}^{n}$. Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 1, pp. 11-19. http://geodesic.mathdoc.fr/item/VMJ_2021_23_1_a1/
[1] Georgiev V., Todorova G., “Existence of a Solution of the Wave Equation with Nonlinear Damping and Source Term”, Journal of Differential Equations, 109:2 (1994), 295–308. | DOI | MR | Zbl
[2] Levine H. A., Serrin J., “Global Nonexistence Theorems for Quasilinear Evolution Equations with Dissipation”, Archive for Rational Mechanics and Analysis, 137:4 (1997), 341–361 | DOI | MR | Zbl
[3] Levine H. A., Park S. R., Serrin J., “Global Existence and Global Nonexistence of Solutions of the Cauchy Problem for a Nonlinearly Damped Wave Equation”, Journal of Mathematical Analysis and Applications, 228:1 (1998), 181–205 | DOI | MR | Zbl
[4] Vittilaro E., “Global Nonexistence Theorems for a Class of Evolution Equation with Dissipation”, Archive for Rational Mechanics and Analysis, 149:2 (1999), 155–182 | DOI | MR
[5] Lazer A. C., McKenna P. J., “Large-Amplitude Periodic Oscillations in Suspension Bridges: Some New Connections with Nonlinear Analysis”, SIAM Review, 32:4 (1990), 537–578 | DOI | MR | Zbl
[6] Georgoulis E. H., Houston P., “Discontinuous Galerkin Mmethods for the Biharmonic Problem”, IMA Journal of Numerical Analysis, 29:3 (2009), 573–594 | DOI | MR | Zbl
[7] Pryer T., “Discontinuous Galerkin Methods for the $p$-Biharmonic Equation from a Discrete Variational perspective”, Electronic Transactions On Numerical Analysis, 41 (2014), 328–349, arXiv: 1209.4002 | MR | Zbl
[8] Kassash Laouar L., Zennir Kh., “Energy Decay Result for a Nonlinear Wave $p$-Laplace Equation with a Delay Term”, Mathematica Applicanda, 45:1 (2017), 65–80 | DOI | MR
[9] Komornik V., “Rapid Boundary Stabilization of Linear Distributed Systems”, SIAM Journal on Control and Optimization, 35:5 (1997), 1591–1613 | DOI | MR | Zbl
[10] Martinez P., “A New Method to Obtain Decay Rate Estimates for Dissipative Systems”, ESAIM: Control, Optimisation and Calculus of Variations, 4 (1999), 419–444 | DOI | MR | Zbl
[11] Nakao M., Ono K., “Global Existence to the Cauchy Problem of the Semilinear Wave Equation with a Nonlinear Dissipation”, Funkcialaj Ekvacioj, 38 (1995), 417–431 | MR | Zbl
[12] Papadopulos P. G., Stavrakakies N. M., “Global Existence and Blow-Up Results for an Equations of Kirchhoff Type on $\mathbb{R}^{n}$”, Topological Methods in Nonlinear Analysis, 17 (2001), 91–109 | DOI | MR
[13] Reed M., Simon B., Methods of Mathematical Physics III: Scattering Theory, Academic Press, New York, 1979 | MR | Zbl
[14] Tebou L., “Energy Decay Estimates for Some Weakly Coupled Euler-Bernoulli and Wave Equations with Indirect Damping Mechanisms”, Mathematical Control Related Fields, 2:1 (2012), 45–60 | DOI | MR | Zbl
[15] Van Der Vorst R. C. A. M., “Best Constant for the Embedding of the Space $H^2\cap H^1_0(\Omega)$ into $L^{2n/n-4}(\Omega)$”, Differential and Integral Equations, 6:2 (1993), 259–276 https://projecteuclid.org/euclid.die/1370870189 | MR | Zbl
[16] Karachalios N. I., Stavrakakis N. M., “Global Existence and Blow Up Results for Some Nonlinear Wave Equations on $\mathbb{R}^{n}$”, Advances in Differential Equations, 6:2 (2001), 155–174 https://projecteuclid.org/euclid.ade/1357141492 | MR | Zbl