Blow-up result for a class of wave $p$-Laplace equation with nonlinear dissipation in $\mathbb{R}^{n}$
Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 1, pp. 11-19

Voir la notice de l'article provenant de la source Math-Net.Ru

The Laplace equations has been studied in several stages and has gradually developed over the past decades. Beginning with the well-known standard equation $\Delta u=0$, where it has been well studied in all aspects, many results have been found and improved in an excellent manner. Passing to $p$-Laplace equation $\Delta_p u=0$ with a constant parameter, whether in stationary or evolutionary systems, where it experienced unprecedented development and was studied in almost exhaustively. In this article, we consider initial value problem for nonlinear wave equation containing the $p$-Laplacian operator. We prove that a class of solutions with negative initial energy blows up in finite time if $ p\geq r \geq m $, by using contradiction argument. Additional difficulties due to the constant exponents in $\mathbb{R}^n$ are treated in order to obtain the main conclusion. We used a contradiction argument to obtain a condition on initial data such that the solution extinct at finite time. In the absence of the density function, our system reduces to the nonlinear damped wave equation, it has been extensively studied by many mathematicians in bounded domain.
@article{VMJ_2021_23_1_a1,
     author = {B. Belhadji and A. Beniani and Kh. Zennir},
     title = {Blow-up result for a class of wave $p${-Laplace} equation with  nonlinear dissipation in $\mathbb{R}^{n}$},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {11--19},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2021_23_1_a1/}
}
TY  - JOUR
AU  - B. Belhadji
AU  - A. Beniani
AU  - Kh. Zennir
TI  - Blow-up result for a class of wave $p$-Laplace equation with  nonlinear dissipation in $\mathbb{R}^{n}$
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2021
SP  - 11
EP  - 19
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2021_23_1_a1/
LA  - en
ID  - VMJ_2021_23_1_a1
ER  - 
%0 Journal Article
%A B. Belhadji
%A A. Beniani
%A Kh. Zennir
%T Blow-up result for a class of wave $p$-Laplace equation with  nonlinear dissipation in $\mathbb{R}^{n}$
%J Vladikavkazskij matematičeskij žurnal
%D 2021
%P 11-19
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2021_23_1_a1/
%G en
%F VMJ_2021_23_1_a1
B. Belhadji; A. Beniani; Kh. Zennir. Blow-up result for a class of wave $p$-Laplace equation with  nonlinear dissipation in $\mathbb{R}^{n}$. Vladikavkazskij matematičeskij žurnal, Tome 23 (2021) no. 1, pp. 11-19. http://geodesic.mathdoc.fr/item/VMJ_2021_23_1_a1/