On Hadamard and Hadamard-type directional fractional integro-differentiation in weighted Lebesgue spaces with mixed norm
Vladikavkazskij matematičeskij žurnal, Tome 22 (2020) no. 4, pp. 119-134 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper presents definitions and various auxiliary properties of Hadamard and Hadamard-type directional fractional integrals, Marchaud–Hadamard and Marchaud–Hadamard-type directional fractional derivatives. A relation is established between Hadamard and Hadamard-type directional fractional integrals and Marchaud–Hadamard and Marchaud–Hadamard-type directional fractional derivatives with the directional Riemann-Liouville operator. A modification of Hadamard and Hadamard-type directional fractional integrals with the kernel improved at infinity is introduced. The paper deals with a stretch invariant “convolution type” operators in weighted Lebesgue spaces with mixed norm. The boundedness and semigroup properties of Hadamard and Hadamard-type directional fractional integration in weighted Lebesgue spaces with mixed norm are proved. The compositions of Hadamard and Hadamard-type fractional integral and Marchaud–Hadamard and Marchaud–Hadamard-type directional fractional derivative are also considered and integral representation of Marchaud–Hadamard and Marchaud–Hadamard-type truncated directional fractional derivatives is obtained. Inversion theorems are proved for Hadamard and Hadamard-type directional fractional integrals on weighted Lebesgue spaces with mixed norm. A relationship between ordinary and truncated Marchaud–Hadamard and Marchaud–Hadamard-type directional fractional derivatives is also revealed.
@article{VMJ_2020_22_4_a9,
     author = {M. U. Yakhshiboev},
     title = {On {Hadamard} and {Hadamard-type} directional fractional integro-differentiation in weighted {Lebesgue} spaces with mixed norm},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {119--134},
     year = {2020},
     volume = {22},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2020_22_4_a9/}
}
TY  - JOUR
AU  - M. U. Yakhshiboev
TI  - On Hadamard and Hadamard-type directional fractional integro-differentiation in weighted Lebesgue spaces with mixed norm
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2020
SP  - 119
EP  - 134
VL  - 22
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMJ_2020_22_4_a9/
LA  - ru
ID  - VMJ_2020_22_4_a9
ER  - 
%0 Journal Article
%A M. U. Yakhshiboev
%T On Hadamard and Hadamard-type directional fractional integro-differentiation in weighted Lebesgue spaces with mixed norm
%J Vladikavkazskij matematičeskij žurnal
%D 2020
%P 119-134
%V 22
%N 4
%U http://geodesic.mathdoc.fr/item/VMJ_2020_22_4_a9/
%G ru
%F VMJ_2020_22_4_a9
M. U. Yakhshiboev. On Hadamard and Hadamard-type directional fractional integro-differentiation in weighted Lebesgue spaces with mixed norm. Vladikavkazskij matematičeskij žurnal, Tome 22 (2020) no. 4, pp. 119-134. http://geodesic.mathdoc.fr/item/VMJ_2020_22_4_a9/

[1] Hadamard J., “Essai sur l`etude des functions données par leur développment de Taylor”, J. Math. Pures et Appl., 8:4 (1892), 101–186

[2] Benedek A., Panzone R., “The space ${L}^{p}$, with mixed norm”, Duke Math. J., 28:3 (1961), 301–324 | DOI | MR | Zbl

[3] Antonic N., Ivec I., “On the Hormander–Mihlin theorem for mixed-norm Lebesgue spaces”, J. Math. Anal. Appl., 433:1 (2016), 176–199 | DOI | MR | Zbl

[4] Stefanov A., Torres R. H., “Calderon–Zygmund operators on mixed Lebesgue spaces and applications to null forms”, J. London Math. Soc., 70:2 (2004), 447–462 | DOI | MR | Zbl

[5] Besov O. V., Il'in V. P., Nikol'skii S. M., Integral Representations of Functions, and Embedding Theorems, Nauka, M., 1975, 480 pp. (in Russian)

[6] Marchaud A. P., “Sur les derivees et sur les differences des functions de variables reelles”, J. Math. Pure et Appl., 6 (1927), 337–426 | MR

[7] Kipriyanov I. A., “The Operator of Fractional Differentiation and the Powers of Elliptic Operators”, Dokl. Akad. Nauk SSSR, 131:2 (1960), 238–241 (in Russian) | Zbl

[8] Kipriyanov I. A., “On Spaces of Fractional-Differentiable Functions”, Izv. Akad. Nauk SSSR. Ser. Mat., 24:6 (1960), 865–882 (in Russian) | Zbl

[9] Kukushkin M. V., “On some Qualitative Properties of the Operator of Fractional Differentiation in Kipriyanov Sense”, Vestnik SamU. Estestvenno-Nauchnaya Ser., 2017, no. 2, 32–43 (in Russian) | Zbl

[10] Butzer P. L., Kilbas A. A., Trujillo J. J., “Fractional calculus in the Mellin setting and Hadamard-type fractional integrals”, J. Math. Anal. Appl., 269:1 (2002), 1–27 | DOI | MR | Zbl

[11] Kilbas A. A., “Hadamard-type Fractional Calculus”, Journal of the Korean Mathematical Society, 38:6 (2001), 1191–1204 | MR | Zbl

[12] Kilbas A. A., Titioura A. A., “A Marchaud–Hadamard-Type Fractional Derivatives and Inversion of Hadamard-Type Fractional Integrals”, Report of the Academician of Sciences of Belarus, 50:4 (2006), 10–15 (in Russian)

[13] Ma L., Li C., “On Hadamard fractional calculus”, World Scientific, Fractals, 25:3 (2017), 1–13 | DOI | MR

[14] Samko S. G., Yakhshiboyev M. U., “A Chen-type modification Of Hadamard fractional integro-differentiation”, Operator Theory: Advances and Applications, 242 (2014), 325–339 | DOI | MR | Zbl

[15] Wu Y., Yao K., Zhang X., “The Hadamard fractional calculus of a fractal function”, World Scientific. Fractals, 26:3 (2018), 25–36 | DOI | MR

[16] Yakhshiboev M. U., “Hadamard-type fractional integrals and Marchaud-Hadamard-type fractional derivatives in the spaces with power weight”, Uzbek Math. J., 2019, no. 3, 155–174 | DOI | MR

[17] Samko S. G., Kilbas A. A., Marichev O. I., Fractional Integrals and Derivatives and some of their Applications, Nauka and Tekhnika, Minsk, 1987, 688 pp. (in Russian) | MR

[18] Berdyshev A. S., Turmetov B. Kh., Kadirkulov B. J., “Some Properties and Applications of the Integrodifferential Operators of Hadamard–Marchaud Type in the Class of Harmonic Functions”, Siberian Mathematical Journal, 53:4 (2012), 600–612 | DOI | MR | Zbl

[19] Kilbas A. A., Titioura A. A., “Nonlinear differential equation with Marchaud-Hadamard-type fractional derivative in the weighted space of summable functions”, Mathematical Modelling and Analysis, 12:3 (2007), 343–356 | DOI | MR | Zbl

[20] Stein E. M., Singular Integrals and Differentialiability Properties of Functions, Mir, M., 1973, 342 pp. (in Russian)