@article{VMJ_2020_22_4_a8,
author = {S. G. Samko and S. M. Umarkhadzhiev},
title = {Grand {Morrey} type spaces},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {104--118},
year = {2020},
volume = {22},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2020_22_4_a8/}
}
S. G. Samko; S. M. Umarkhadzhiev. Grand Morrey type spaces. Vladikavkazskij matematičeskij žurnal, Tome 22 (2020) no. 4, pp. 104-118. http://geodesic.mathdoc.fr/item/VMJ_2020_22_4_a8/
[1] Iwaniec T., Sbordone C., “On the Integrability of the Jacobian under Minimal Hypotheses”, Archive for Rational Mechanics and Analysis, 119:2 (1992), 129–143 | DOI | MR | Zbl
[2] Fiorenza A., Gupta B., Jain P., “The Maximal Theorem in Weighted Grand Lebesgue Spaces”, Studia Mathematica, 188:2 (2008), 123–133 | DOI | MR | Zbl
[3] Greco L., Iwaniec T., Sbordone C., “Inverting the $p$-Harmonic Operator”, Manuscripta Mathematica, 92:1 (1997), 249–258 | DOI | MR | Zbl
[4] Jain P., Singh A. P., Singh M., Stepanov V., “Sawyer's Duality Principle for Grand Lebesgue Spaces”, Mathematische Nachrichten, 292:4 (2018), 841–849 | DOI | MR
[5] Kokilashvili V., Meskhi A., “A Note on the Boundedness of the Hilbert Transform in Weighted Grand Lebesgue Spaces”, Georgian Mathematical Journal, 16:3 (2009), 547–551 | DOI | MR | Zbl
[6] Samko S. G., Umarkhadzhiev S. M., “On Iwaniec–Sbordone Spaces on Sets which May Have Infinite Measure”, Azerbaijan Journal of Mathematics, 1:1 (2011), 67–84 | MR | Zbl
[7] Samko S. G., Umarkhadzhiev S. M., “On Iwaniec–Sbordone Spaces on Sets which May Have Infinite Measure: Addendum”, Azerbaijan Journal of Mathematics, 1:2 (2011), 143–144 | MR | Zbl
[8] Samko S. G., Umarkhadzhiev S. M., “Riesz Fractional Integrals in Grand Lebesgue Spaces on $\mathbb{R}_n$”, Fractional Calculus and Applied Analysis, 19:3 (2016), 608–624 | DOI | MR | Zbl
[9] Samko S. G., Umarkhadzhiev S. M., “On Grand Lebesgue Spaces on Sets of Infinite Measure”, Mathematische Nachrichten, 290:5–6 (2017), 913–919 | DOI | MR | Zbl
[10] Umarkhadzhiev S. M., “Generalization of the Notion of Grand Lebesgue Space”, Russian Mathematics, 58:4 (2014), 35–43 | DOI | MR | Zbl
[11] Kokilashvili V., Meskhi A., Rafeiro H., “Riesz Type Potential Operators in Generalized Grand Morrey Spaces”, Georgian Mathematical Journal, 20:1 (2013), 43–64 | DOI | MR | Zbl
[12] Meskhi A., “Maximal Functions, Potentials and Singular Integrals in Grand Morrey Spaces”, Complex Variables and Elliptic Equations, 56:10–11 (2011), 1003–1019 | DOI | MR | Zbl
[13] Rafeiro H., “A Note on Boundedness of Operators in Grand Grand Morrey Spaces”, Advances in Harmonic Analysis and Operator Theory, Operator Theory: Advances and Applications, 229, eds. A. Almeida, L. Castro, F.-O. Speck, Springer, Basel, 2013, 349–356 | DOI | MR
[14] Umarkhadzhiev S. M., “The boundedness of the Riesz Potential Operator from Generalized Grand Lebesgue Spaces to Generalized Grand Morrey Spaces”, Operator Theory, Operator Algebras and Applications, Birkhäuser–Springer, Basel, 2014, 363–373 | DOI | MR | Zbl
[15] Guliyev V., Integral Operators on Function Spaces on Homogeneous Groups and on Domains in ${R}^n$, PhD Thesis, Doctor's Degree, Steklov Math. Inst., M., 1994, 329 pp. (in Russian)
[16] Guliyev V., Function Spaces, Integral Operators and Two Weighted Inequalities on Homogeneous Groups. Some Applications, Baku, 1999, 332 pp. (in Russian)
[17] Adams D. R., Lectures on ${L}^p$-Potential Theory, Umea University Reports, No 2, 1981
[18] Burenkov V. I., Guliyev H., “Necessary and Sufficientconditions for Boundedness of the Maximal Operator in Local Morrey-Type Spaces”, Studia Mathematica, 163:2 (2004), 157–176 | DOI | MR | Zbl
[19] Gogatishvili A., Mustafayev R., “Dual Spaces of Local Morrey-Type Spaces”, Czechoslovak Mathematical Journal, 61:3 (2011), 609–622 | DOI | MR | Zbl
[20] Burenkov V. I., “Recent Progress in Studying the Boundedness of Classical Operators of Real Analysis in General Morrey-Type Spaces. I”, Eurasian Mathematical Journal, 3:3 (2012), 11–32 | MR | Zbl
[21] Burenkov V. I., “Recent Progress in Studying the Boundedness of Classical Operators of Real Analysis in General Morrey-Type Spaces. II”, Eurasian Mathematical Journal, 4:1 (2013), 21–45 | MR | Zbl
[22] Rafeiro H., Samko N., Samko S., “Morrey-Campanato Spaces: an Overview”, Operator Theory, Pseudo-Differential Equations, and Mathematical Physics, Operator Theory: Advances and Applications, 228, eds. Y. Karlovich, L. Rodino, B. Silbermann, I. Spitkovsky, Springer, Basel, 2013, 293–323 | DOI | MR | Zbl
[23] Samko N. G., “Integral Operators Commuting with Dilations and Rotations in Generalized Morrey-Type Spaces”, Mathematical Methods in the Applied Sciences, 43:16 (2020), 9416–9434 | DOI | MR | Zbl
[24] Umarkhadzhiev S. M., “Integral Operators with Homogeneous Kernels in Grand Lebesgue Spaces”, Mathematical Notes, 102:5–6 (2017), 710–721 | DOI | MR | Zbl
[25] Kokilashvili V., Meskhi A., “Weighted Sobolev Inequality in Grand Mixed Norm Lebesgue Spaces”, Positivity, 2020 | DOI | MR