Grand Morrey type spaces
Vladikavkazskij matematičeskij žurnal, Tome 22 (2020) no. 4, pp. 104-118 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The so called grand spaces nowadays are one of the main objects in the theory of function spaces. Grand Lebesgue spaces were introduced by T. Iwaniec and C. Sbordone in the case of sets $\Omega$ with finite measure $|\Omega|<\infty$, and by the authors in the case $|\Omega|=\infty$. The latter is based on introduction of the notion of grandizer. The idea of “grandization” was also applied in the context of Morrey spaces. In this paper we develop the idea of grandization to more general Morrey spaces $L^{p,q,w}(\mathbb{R}^n)$, known as Morrey type spaces. We introduce grand Morrey type spaces, which include mixed and partial grand versions of such spaces. The mixed grand space is defined by the norm $$ \sup_{\varepsilon,\delta} \varphi(\varepsilon,\delta)\sup_{x\in E} \left(\int\limits_{0}^{\infty}{w(r)^{q-\delta}}b(r)^{\frac{\delta}{q}} \left( \int\limits_{|x-y|<r}\big|f(y)\big|^{p-\varepsilon} a(y)^{\frac{\varepsilon}{p}} dy\right)^{\frac{q-\delta}{p-\varepsilon}} \frac{dr}{r}\right)^{\frac{1}{q-\varepsilon}} $$ with the use of two grandizers $a$ and $b$. In the case of grand spaces, partial with respect to the exponent $q$, we study the boundedness of some integral operators. The class of these operators contains, in particular, multidimensional versions of Hardy type and Hilbert operators.
@article{VMJ_2020_22_4_a8,
     author = {S. G. Samko and S. M. Umarkhadzhiev},
     title = {Grand {Morrey} type spaces},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {104--118},
     year = {2020},
     volume = {22},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2020_22_4_a8/}
}
TY  - JOUR
AU  - S. G. Samko
AU  - S. M. Umarkhadzhiev
TI  - Grand Morrey type spaces
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2020
SP  - 104
EP  - 118
VL  - 22
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMJ_2020_22_4_a8/
LA  - en
ID  - VMJ_2020_22_4_a8
ER  - 
%0 Journal Article
%A S. G. Samko
%A S. M. Umarkhadzhiev
%T Grand Morrey type spaces
%J Vladikavkazskij matematičeskij žurnal
%D 2020
%P 104-118
%V 22
%N 4
%U http://geodesic.mathdoc.fr/item/VMJ_2020_22_4_a8/
%G en
%F VMJ_2020_22_4_a8
S. G. Samko; S. M. Umarkhadzhiev. Grand Morrey type spaces. Vladikavkazskij matematičeskij žurnal, Tome 22 (2020) no. 4, pp. 104-118. http://geodesic.mathdoc.fr/item/VMJ_2020_22_4_a8/

[1] Iwaniec T., Sbordone C., “On the Integrability of the Jacobian under Minimal Hypotheses”, Archive for Rational Mechanics and Analysis, 119:2 (1992), 129–143 | DOI | MR | Zbl

[2] Fiorenza A., Gupta B., Jain P., “The Maximal Theorem in Weighted Grand Lebesgue Spaces”, Studia Mathematica, 188:2 (2008), 123–133 | DOI | MR | Zbl

[3] Greco L., Iwaniec T., Sbordone C., “Inverting the $p$-Harmonic Operator”, Manuscripta Mathematica, 92:1 (1997), 249–258 | DOI | MR | Zbl

[4] Jain P., Singh A. P., Singh M., Stepanov V., “Sawyer's Duality Principle for Grand Lebesgue Spaces”, Mathematische Nachrichten, 292:4 (2018), 841–849 | DOI | MR

[5] Kokilashvili V., Meskhi A., “A Note on the Boundedness of the Hilbert Transform in Weighted Grand Lebesgue Spaces”, Georgian Mathematical Journal, 16:3 (2009), 547–551 | DOI | MR | Zbl

[6] Samko S. G., Umarkhadzhiev S. M., “On Iwaniec–Sbordone Spaces on Sets which May Have Infinite Measure”, Azerbaijan Journal of Mathematics, 1:1 (2011), 67–84 | MR | Zbl

[7] Samko S. G., Umarkhadzhiev S. M., “On Iwaniec–Sbordone Spaces on Sets which May Have Infinite Measure: Addendum”, Azerbaijan Journal of Mathematics, 1:2 (2011), 143–144 | MR | Zbl

[8] Samko S. G., Umarkhadzhiev S. M., “Riesz Fractional Integrals in Grand Lebesgue Spaces on $\mathbb{R}_n$”, Fractional Calculus and Applied Analysis, 19:3 (2016), 608–624 | DOI | MR | Zbl

[9] Samko S. G., Umarkhadzhiev S. M., “On Grand Lebesgue Spaces on Sets of Infinite Measure”, Mathematische Nachrichten, 290:5–6 (2017), 913–919 | DOI | MR | Zbl

[10] Umarkhadzhiev S. M., “Generalization of the Notion of Grand Lebesgue Space”, Russian Mathematics, 58:4 (2014), 35–43 | DOI | MR | Zbl

[11] Kokilashvili V., Meskhi A., Rafeiro H., “Riesz Type Potential Operators in Generalized Grand Morrey Spaces”, Georgian Mathematical Journal, 20:1 (2013), 43–64 | DOI | MR | Zbl

[12] Meskhi A., “Maximal Functions, Potentials and Singular Integrals in Grand Morrey Spaces”, Complex Variables and Elliptic Equations, 56:10–11 (2011), 1003–1019 | DOI | MR | Zbl

[13] Rafeiro H., “A Note on Boundedness of Operators in Grand Grand Morrey Spaces”, Advances in Harmonic Analysis and Operator Theory, Operator Theory: Advances and Applications, 229, eds. A. Almeida, L. Castro, F.-O. Speck, Springer, Basel, 2013, 349–356 | DOI | MR

[14] Umarkhadzhiev S. M., “The boundedness of the Riesz Potential Operator from Generalized Grand Lebesgue Spaces to Generalized Grand Morrey Spaces”, Operator Theory, Operator Algebras and Applications, Birkhäuser–Springer, Basel, 2014, 363–373 | DOI | MR | Zbl

[15] Guliyev V., Integral Operators on Function Spaces on Homogeneous Groups and on Domains in ${R}^n$, PhD Thesis, Doctor's Degree, Steklov Math. Inst., M., 1994, 329 pp. (in Russian)

[16] Guliyev V., Function Spaces, Integral Operators and Two Weighted Inequalities on Homogeneous Groups. Some Applications, Baku, 1999, 332 pp. (in Russian)

[17] Adams D. R., Lectures on ${L}^p$-Potential Theory, Umea University Reports, No 2, 1981

[18] Burenkov V. I., Guliyev H., “Necessary and Sufficientconditions for Boundedness of the Maximal Operator in Local Morrey-Type Spaces”, Studia Mathematica, 163:2 (2004), 157–176 | DOI | MR | Zbl

[19] Gogatishvili A., Mustafayev R., “Dual Spaces of Local Morrey-Type Spaces”, Czechoslovak Mathematical Journal, 61:3 (2011), 609–622 | DOI | MR | Zbl

[20] Burenkov V. I., “Recent Progress in Studying the Boundedness of Classical Operators of Real Analysis in General Morrey-Type Spaces. I”, Eurasian Mathematical Journal, 3:3 (2012), 11–32 | MR | Zbl

[21] Burenkov V. I., “Recent Progress in Studying the Boundedness of Classical Operators of Real Analysis in General Morrey-Type Spaces. II”, Eurasian Mathematical Journal, 4:1 (2013), 21–45 | MR | Zbl

[22] Rafeiro H., Samko N., Samko S., “Morrey-Campanato Spaces: an Overview”, Operator Theory, Pseudo-Differential Equations, and Mathematical Physics, Operator Theory: Advances and Applications, 228, eds. Y. Karlovich, L. Rodino, B. Silbermann, I. Spitkovsky, Springer, Basel, 2013, 293–323 | DOI | MR | Zbl

[23] Samko N. G., “Integral Operators Commuting with Dilations and Rotations in Generalized Morrey-Type Spaces”, Mathematical Methods in the Applied Sciences, 43:16 (2020), 9416–9434 | DOI | MR | Zbl

[24] Umarkhadzhiev S. M., “Integral Operators with Homogeneous Kernels in Grand Lebesgue Spaces”, Mathematical Notes, 102:5–6 (2017), 710–721 | DOI | MR | Zbl

[25] Kokilashvili V., Meskhi A., “Weighted Sobolev Inequality in Grand Mixed Norm Lebesgue Spaces”, Positivity, 2020 | DOI | MR