Grand Morrey type spaces
Vladikavkazskij matematičeskij žurnal, Tome 22 (2020) no. 4, pp. 104-118

Voir la notice de l'article provenant de la source Math-Net.Ru

The so called grand spaces nowadays are one of the main objects in the theory of function spaces. Grand Lebesgue spaces were introduced by T. Iwaniec and C. Sbordone in the case of sets $\Omega$ with finite measure $|\Omega|\infty$, and by the authors in the case $|\Omega|=\infty$. The latter is based on introduction of the notion of grandizer. The idea of “grandization” was also applied in the context of Morrey spaces. In this paper we develop the idea of grandization to more general Morrey spaces $L^{p,q,w}(\mathbb{R}^n)$, known as Morrey type spaces. We introduce grand Morrey type spaces, which include mixed and partial grand versions of such spaces. The mixed grand space is defined by the norm $$ \sup_{\varepsilon,\delta} \varphi(\varepsilon,\delta)\sup_{x\in E} \left(\int\limits_{0}^{\infty}{w(r)^{q-\delta}}b(r)^{\frac{\delta}{q}} \left( \int\limits_{|x-y|}\big|f(y)\big|^{p-\varepsilon} a(y)^{\frac{\varepsilon}{p}} dy\right)^{\frac{q-\delta}{p-\varepsilon}} \frac{dr}{r}\right)^{\frac{1}{q-\varepsilon}} $$ with the use of two grandizers $a$ and $b$. In the case of grand spaces, partial with respect to the exponent $q$, we study the boundedness of some integral operators. The class of these operators contains, in particular, multidimensional versions of Hardy type and Hilbert operators.
@article{VMJ_2020_22_4_a8,
     author = {S. G. Samko and S. M. Umarkhadzhiev},
     title = {Grand {Morrey} type spaces},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {104--118},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2020_22_4_a8/}
}
TY  - JOUR
AU  - S. G. Samko
AU  - S. M. Umarkhadzhiev
TI  - Grand Morrey type spaces
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2020
SP  - 104
EP  - 118
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2020_22_4_a8/
LA  - en
ID  - VMJ_2020_22_4_a8
ER  - 
%0 Journal Article
%A S. G. Samko
%A S. M. Umarkhadzhiev
%T Grand Morrey type spaces
%J Vladikavkazskij matematičeskij žurnal
%D 2020
%P 104-118
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2020_22_4_a8/
%G en
%F VMJ_2020_22_4_a8
S. G. Samko; S. M. Umarkhadzhiev. Grand Morrey type spaces. Vladikavkazskij matematičeskij žurnal, Tome 22 (2020) no. 4, pp. 104-118. http://geodesic.mathdoc.fr/item/VMJ_2020_22_4_a8/