@article{VMJ_2020_22_4_a7,
author = {Z. A. Kusraeva and S. N. Siukaev},
title = {Some properties of orthogonally additive homogeneous polynomials on {Banach} lattices},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {92--103},
year = {2020},
volume = {22},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2020_22_4_a7/}
}
TY - JOUR AU - Z. A. Kusraeva AU - S. N. Siukaev TI - Some properties of orthogonally additive homogeneous polynomials on Banach lattices JO - Vladikavkazskij matematičeskij žurnal PY - 2020 SP - 92 EP - 103 VL - 22 IS - 4 UR - http://geodesic.mathdoc.fr/item/VMJ_2020_22_4_a7/ LA - ru ID - VMJ_2020_22_4_a7 ER -
Z. A. Kusraeva; S. N. Siukaev. Some properties of orthogonally additive homogeneous polynomials on Banach lattices. Vladikavkazskij matematičeskij žurnal, Tome 22 (2020) no. 4, pp. 92-103. http://geodesic.mathdoc.fr/item/VMJ_2020_22_4_a7/
[1] Dineen S., Complex Analysis on Infinite Dimensional Spaces, Springer, Berlin, 1999 | MR | Zbl
[2] Sundaresan K., “Geometry of spaces of homogeneous polynomials on Banach lattices”, Appl. Geometry and Discrete Math. DIMACS, Discrete Math. Theoret. Comput. Sci., Amer. Math. Soc., Providence, R. I., 1991, 571–586 | DOI | MR
[3] Grecu B. C., Ryan R. A., “Polynomials on Banach spaces with unconditional bases”, Proc. Amer. Math. Soc., 133:4 (2005), 1083–1091 | DOI | MR | Zbl
[4] Kusraeva Z. A., Orthogonally additive polynomials on vector lattices, Thesis, Sobolev Inst. of Math. of the Sib. Branch of the RAS, Novosibirsk, 2013 | MR
[5] Linares P., Orthogonal additive polynomials and applications, Thesis, Departamento de Analisis Matematico. Universidad Complutense de Madrid, 2009
[6] Loane J., Polynomials on Riesz spaces, Thesis, Department of Math. Nat. Univ. of Ireland, Galway, 2007
[7] Ben Amor F., “Orthogonally additive homogenous polynomials on vector lattices”, Commun. Algebra, 43:3 (2015), 1118–1134 | DOI | MR | Zbl
[8] Benyamini Y., Lassalle S., Llavona J. G., “Homogeneous orthogonally additive polynomials on Banach lattices”, Bull. London Math. Soc., 38:3 (2006), 459–469 | DOI | MR | Zbl
[9] Bu Q., Buskes G., “Polynomials on Banach lattices and positive tensor products”, J. Math. Anal. Appl., 388:2 (2012), 845–862 | DOI | MR | Zbl
[10] Cruickshank J., Loane J., Ryan R. A., “Positive polynomials on Riesz spaces”, Positivity, 21:3 (2017), 885–895 | DOI | MR | Zbl
[11] Ibort A., Linares P., Llavona J. G., “A representation theorem for orthogonally additive polynomials on Riesz spaces”, Rev. Mat. Complut., 25 (2012), 21–30 | DOI | MR | Zbl
[12] Kusraev A. G., Kusraeva Z. A., “Monomial decomposition of homogeneous polynomials in vector lattices”, Adv. Oper. Theory, 4:2 (2019), 428–446 | DOI | MR | Zbl
[13] Kusraeva Z. A., “Representation of Orthogonally Additive Polynomials”, Siberian Mathematical Journal, 52:2 (2011), 248–255 | DOI | MR | Zbl
[14] Abramovich Y. A., Aliprantis C. D., “Positive operators”, Handbook of the Geometry of Banach Spaces, v. 1, eds. W. B. Johnson, J. Lindenstrauss, Elsevier, 2001, 85–122 | DOI | MR | Zbl
[15] Wickstead A. W., “Regular operators between Banach lattices”, Positivity, Trends in Mathematics, Birkhäuser, Basel, 2007, 255–279 | DOI | MR | Zbl
[16] Aliprantis C. D., Burkinshaw O., Positive Operators, Acad. Press Inc., London etc., 1985, xvi+367 pp. | MR | Zbl
[17] Meyer-Nieberg P., Banach Lattices, Springer-Verlag, Berlin etc., 1991 | MR | Zbl
[18] Lindenstrauss J., Tzafriri L., Classical Banach Spaces, v. 2, Function Spaces, Springer-Verlag, Berlin etc., 1979, 243 pp. | MR | Zbl
[19] Boulabiar K., Buskes G., “Vector lattice powers: $f$-algebras and functional calculus”, Comm. Algebra, 34:4 (2006), 1435–1442 | DOI | MR | Zbl
[20] Kusraeva Z. A., “Powers of quasi-Banach lattices and orthogonally additive polynomials”, J. Math. Anal. Appl., 458:1 (2018), 767–780 | DOI | MR | Zbl
[21] Kusraeva Z. A., “On Compact Domination of Homogeneous Orthogonally Additive Polynomials”, Siberian Mathematical Journal, 57:3 (2016), 519–524 | DOI | DOI | MR | Zbl
[22] Walsh B., “On characterising Kothe sequence spaces as vector lattices”, Math. Ann., 175 (1968), 253–256 | DOI | MR | Zbl
[23] Van Rooij A. C. M., When do the regular operators between two Riesz spaces form a Riesz space?, Technical Report, No 8410, Katholieke Universiteit, Nijmegen, 1984
[24] Wnuk W., “Characterization of discrete Banach lattices with order continuous norms”, Proc. Amer. Math. Soc., 104:1 (1988), 197–200 | DOI | MR | Zbl
[25] Hong-Yun Xiong, “On whether or not $\mathcal{L}(E, F)=\mathcal{L}^r(E,F)$ for some classical Banach lattices $E$ and $F$”, Nederl. Akad. Wetensch. Indag. Math., 46:3 (1984), 267–282 | DOI | MR | Zbl
[26] Zi li Chen, Ying Feng, Jin Xi Chen, “The Order Continuity of the Regular Norm on Regular Operator Spaces”, Abstract and Applied Analysis, 2013 (2013), 183786, 6 pp. | DOI | MR | Zbl
[27] Zi li Chen, “On the order continuity of the regular norm”, Proceedings Positivity IV — Theory and Applications (Dresden, 2006), 45–51 | MR
[28] Schwarz H.-V., Banach Lattices and Operators, Teubner, Leipzig, 1984 | MR | Zbl
[29] Dodds P. G., Fremlin D. H., “Compact operators in Banach lattices”, Israel J. Math., 34:4 (1979), 287–320 | DOI | MR | Zbl