Some properties of orthogonally additive homogeneous polynomials on Banach lattices
    
    
  
  
  
      
      
      
        
Vladikavkazskij matematičeskij žurnal, Tome 22 (2020) no. 4, pp. 92-103
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $E$ and $F$ be Banach lattices and let $\mathcal{P}_o({}^s E,F)$ stand for the space of all norm bounded orthogonally additive $s$-homogeneous polynomial from $E$ to $F$. Denote by $\mathcal{P}_o^r({}^s E,F)$ the part of $\mathcal{P}_o({}^s E,F)$ consisting of the differences of positive polynomials. The main results of the paper read as follows. 
Theorem 3.4. Let $s\in\mathbb{N}$ and $(E,\|\cdot\|)$ is a $\sigma$-Dedekind complete $s$-convex Banach lattice. The following are equivalent: $(1)$ $\mathcal{P}_o({}^s E,F)\equiv\mathcal{P}_o^r({}^s E,F)$ for every $AM$-space $F$. $(2)$ $\mathcal{P}_o({}^s E,c_0)=\mathcal{P}^r_o({}^s E,F)$ for every $AM$-space $F$. $(3)$ $\mathcal{P}_o({}^s E,c_0)=\mathcal{P}^r_o({}^s E,c_0)$. $(4)$ $\mathcal{P}_o({}^s E,c_0)\equiv\mathcal{P}_o^r({}^s E,c_0)$. $(5)$ $E$ is atomic and order continuous.
Theorem 4.3. For a pair of Banach lattices $E$ and $F$ the following are equivalent: $(1)$ $\mathcal{P}_o^r({}^s E,F)$ is a vector lattice and the regular norm $\|\cdot\|_r$ on $\mathcal{P}_o^r({}^s E,F)$ is order continuous. $(2)$ Each positive orthogonally additive $s$-homogeneous polynomial from $E$ to $F$ is $L$- and $M$-weakly compact. 
Theorem 4.6. Let $E$ and $F$ be Banach lattices. Assume that $F$ has the positive Schur property and $E$ is $s$-convex for some $s\in\mathbb{N}$. Then the following are equivalent: $(1)$ $(\mathcal{P}_o^r({}^s E,F),\|\cdot\|_r)$ is a $K B$-space. $(2)$ The regular norm $\|\cdot\|_r$ on $\mathcal{P}_o^r({}^s E,F)$ is order continuous. $(3)$ $E$ does not contain any sulattice lattice isomorphc to $l^s$.
			
            
            
            
          
        
      @article{VMJ_2020_22_4_a7,
     author = {Z. A. Kusraeva and S. N. Siukaev},
     title = {Some properties of orthogonally additive homogeneous polynomials on {Banach} lattices},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {92--103},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2020_22_4_a7/}
}
                      
                      
                    TY - JOUR AU - Z. A. Kusraeva AU - S. N. Siukaev TI - Some properties of orthogonally additive homogeneous polynomials on Banach lattices JO - Vladikavkazskij matematičeskij žurnal PY - 2020 SP - 92 EP - 103 VL - 22 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMJ_2020_22_4_a7/ LA - ru ID - VMJ_2020_22_4_a7 ER -
%0 Journal Article %A Z. A. Kusraeva %A S. N. Siukaev %T Some properties of orthogonally additive homogeneous polynomials on Banach lattices %J Vladikavkazskij matematičeskij žurnal %D 2020 %P 92-103 %V 22 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMJ_2020_22_4_a7/ %G ru %F VMJ_2020_22_4_a7
Z. A. Kusraeva; S. N. Siukaev. Some properties of orthogonally additive homogeneous polynomials on Banach lattices. Vladikavkazskij matematičeskij žurnal, Tome 22 (2020) no. 4, pp. 92-103. http://geodesic.mathdoc.fr/item/VMJ_2020_22_4_a7/
