Some properties of orthogonally additive homogeneous polynomials on Banach lattices
Vladikavkazskij matematičeskij žurnal, Tome 22 (2020) no. 4, pp. 92-103 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $E$ and $F$ be Banach lattices and let $\mathcal{P}_o({}^s E,F)$ stand for the space of all norm bounded orthogonally additive $s$-homogeneous polynomial from $E$ to $F$. Denote by $\mathcal{P}_o^r({}^s E,F)$ the part of $\mathcal{P}_o({}^s E,F)$ consisting of the differences of positive polynomials. The main results of the paper read as follows. Theorem 3.4. Let $s\in\mathbb{N}$ and $(E,\|\cdot\|)$ is a $\sigma$-Dedekind complete $s$-convex Banach lattice. The following are equivalent: $(1)$ $\mathcal{P}_o({}^s E,F)\equiv\mathcal{P}_o^r({}^s E,F)$ for every $AM$-space $F$. $(2)$ $\mathcal{P}_o({}^s E,c_0)=\mathcal{P}^r_o({}^s E,F)$ for every $AM$-space $F$. $(3)$ $\mathcal{P}_o({}^s E,c_0)=\mathcal{P}^r_o({}^s E,c_0)$. $(4)$ $\mathcal{P}_o({}^s E,c_0)\equiv\mathcal{P}_o^r({}^s E,c_0)$. $(5)$ $E$ is atomic and order continuous. Theorem 4.3. For a pair of Banach lattices $E$ and $F$ the following are equivalent: $(1)$ $\mathcal{P}_o^r({}^s E,F)$ is a vector lattice and the regular norm $\|\cdot\|_r$ on $\mathcal{P}_o^r({}^s E,F)$ is order continuous. $(2)$ Each positive orthogonally additive $s$-homogeneous polynomial from $E$ to $F$ is $L$- and $M$-weakly compact. Theorem 4.6. Let $E$ and $F$ be Banach lattices. Assume that $F$ has the positive Schur property and $E$ is $s$-convex for some $s\in\mathbb{N}$. Then the following are equivalent: $(1)$ $(\mathcal{P}_o^r({}^s E,F),\|\cdot\|_r)$ is a $K B$-space. $(2)$ The regular norm $\|\cdot\|_r$ on $\mathcal{P}_o^r({}^s E,F)$ is order continuous. $(3)$ $E$ does not contain any sulattice lattice isomorphc to $l^s$.
@article{VMJ_2020_22_4_a7,
     author = {Z. A. Kusraeva and S. N. Siukaev},
     title = {Some properties of orthogonally additive homogeneous polynomials on {Banach} lattices},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {92--103},
     year = {2020},
     volume = {22},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2020_22_4_a7/}
}
TY  - JOUR
AU  - Z. A. Kusraeva
AU  - S. N. Siukaev
TI  - Some properties of orthogonally additive homogeneous polynomials on Banach lattices
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2020
SP  - 92
EP  - 103
VL  - 22
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMJ_2020_22_4_a7/
LA  - ru
ID  - VMJ_2020_22_4_a7
ER  - 
%0 Journal Article
%A Z. A. Kusraeva
%A S. N. Siukaev
%T Some properties of orthogonally additive homogeneous polynomials on Banach lattices
%J Vladikavkazskij matematičeskij žurnal
%D 2020
%P 92-103
%V 22
%N 4
%U http://geodesic.mathdoc.fr/item/VMJ_2020_22_4_a7/
%G ru
%F VMJ_2020_22_4_a7
Z. A. Kusraeva; S. N. Siukaev. Some properties of orthogonally additive homogeneous polynomials on Banach lattices. Vladikavkazskij matematičeskij žurnal, Tome 22 (2020) no. 4, pp. 92-103. http://geodesic.mathdoc.fr/item/VMJ_2020_22_4_a7/

[1] Dineen S., Complex Analysis on Infinite Dimensional Spaces, Springer, Berlin, 1999 | MR | Zbl

[2] Sundaresan K., “Geometry of spaces of homogeneous polynomials on Banach lattices”, Appl. Geometry and Discrete Math. DIMACS, Discrete Math. Theoret. Comput. Sci., Amer. Math. Soc., Providence, R. I., 1991, 571–586 | DOI | MR

[3] Grecu B. C., Ryan R. A., “Polynomials on Banach spaces with unconditional bases”, Proc. Amer. Math. Soc., 133:4 (2005), 1083–1091 | DOI | MR | Zbl

[4] Kusraeva Z. A., Orthogonally additive polynomials on vector lattices, Thesis, Sobolev Inst. of Math. of the Sib. Branch of the RAS, Novosibirsk, 2013 | MR

[5] Linares P., Orthogonal additive polynomials and applications, Thesis, Departamento de Analisis Matematico. Universidad Complutense de Madrid, 2009

[6] Loane J., Polynomials on Riesz spaces, Thesis, Department of Math. Nat. Univ. of Ireland, Galway, 2007

[7] Ben Amor F., “Orthogonally additive homogenous polynomials on vector lattices”, Commun. Algebra, 43:3 (2015), 1118–1134 | DOI | MR | Zbl

[8] Benyamini Y., Lassalle S., Llavona J. G., “Homogeneous orthogonally additive polynomials on Banach lattices”, Bull. London Math. Soc., 38:3 (2006), 459–469 | DOI | MR | Zbl

[9] Bu Q., Buskes G., “Polynomials on Banach lattices and positive tensor products”, J. Math. Anal. Appl., 388:2 (2012), 845–862 | DOI | MR | Zbl

[10] Cruickshank J., Loane J., Ryan R. A., “Positive polynomials on Riesz spaces”, Positivity, 21:3 (2017), 885–895 | DOI | MR | Zbl

[11] Ibort A., Linares P., Llavona J. G., “A representation theorem for orthogonally additive polynomials on Riesz spaces”, Rev. Mat. Complut., 25 (2012), 21–30 | DOI | MR | Zbl

[12] Kusraev A. G., Kusraeva Z. A., “Monomial decomposition of homogeneous polynomials in vector lattices”, Adv. Oper. Theory, 4:2 (2019), 428–446 | DOI | MR | Zbl

[13] Kusraeva Z. A., “Representation of Orthogonally Additive Polynomials”, Siberian Mathematical Journal, 52:2 (2011), 248–255 | DOI | MR | Zbl

[14] Abramovich Y. A., Aliprantis C. D., “Positive operators”, Handbook of the Geometry of Banach Spaces, v. 1, eds. W. B. Johnson, J. Lindenstrauss, Elsevier, 2001, 85–122 | DOI | MR | Zbl

[15] Wickstead A. W., “Regular operators between Banach lattices”, Positivity, Trends in Mathematics, Birkhäuser, Basel, 2007, 255–279 | DOI | MR | Zbl

[16] Aliprantis C. D., Burkinshaw O., Positive Operators, Acad. Press Inc., London etc., 1985, xvi+367 pp. | MR | Zbl

[17] Meyer-Nieberg P., Banach Lattices, Springer-Verlag, Berlin etc., 1991 | MR | Zbl

[18] Lindenstrauss J., Tzafriri L., Classical Banach Spaces, v. 2, Function Spaces, Springer-Verlag, Berlin etc., 1979, 243 pp. | MR | Zbl

[19] Boulabiar K., Buskes G., “Vector lattice powers: $f$-algebras and functional calculus”, Comm. Algebra, 34:4 (2006), 1435–1442 | DOI | MR | Zbl

[20] Kusraeva Z. A., “Powers of quasi-Banach lattices and orthogonally additive polynomials”, J. Math. Anal. Appl., 458:1 (2018), 767–780 | DOI | MR | Zbl

[21] Kusraeva Z. A., “On Compact Domination of Homogeneous Orthogonally Additive Polynomials”, Siberian Mathematical Journal, 57:3 (2016), 519–524 | DOI | DOI | MR | Zbl

[22] Walsh B., “On characterising Kothe sequence spaces as vector lattices”, Math. Ann., 175 (1968), 253–256 | DOI | MR | Zbl

[23] Van Rooij A. C. M., When do the regular operators between two Riesz spaces form a Riesz space?, Technical Report, No 8410, Katholieke Universiteit, Nijmegen, 1984

[24] Wnuk W., “Characterization of discrete Banach lattices with order continuous norms”, Proc. Amer. Math. Soc., 104:1 (1988), 197–200 | DOI | MR | Zbl

[25] Hong-Yun Xiong, “On whether or not $\mathcal{L}(E, F)=\mathcal{L}^r(E,F)$ for some classical Banach lattices $E$ and $F$”, Nederl. Akad. Wetensch. Indag. Math., 46:3 (1984), 267–282 | DOI | MR | Zbl

[26] Zi li Chen, Ying Feng, Jin Xi Chen, “The Order Continuity of the Regular Norm on Regular Operator Spaces”, Abstract and Applied Analysis, 2013 (2013), 183786, 6 pp. | DOI | MR | Zbl

[27] Zi li Chen, “On the order continuity of the regular norm”, Proceedings Positivity IV — Theory and Applications (Dresden, 2006), 45–51 | MR

[28] Schwarz H.-V., Banach Lattices and Operators, Teubner, Leipzig, 1984 | MR | Zbl

[29] Dodds P. G., Fremlin D. H., “Compact operators in Banach lattices”, Israel J. Math., 34:4 (1979), 287–320 | DOI | MR | Zbl