On the structure of elementary nets over quadratic fields
Vladikavkazskij matematičeskij žurnal, Tome 22 (2020) no. 4, pp. 87-91 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The structure of elementary nets over quadratic fields is studied. A set of additive subgroups $\sigma=(\sigma_{ij})$, $1\leq i,j\leq n$, of a ring $R$ is called a net of order $n$ over $R$ if $\sigma_{ir} \sigma_{rj} \subseteq{\sigma_{ij}} $ for all $i$, $r$, $j$. The same system, but without the diagonal, is called elementary net (elementary carpet). An elementary net $\sigma=(\sigma_{ij})$ is called irreducible if all additive subgroups $\sigma_{ij}$ are different from zero. Let $K=\mathbb{Q} (\sqrt{d} )$ be a quadratic field, $D$ a ring of integers of the quadratic field $K$, $\sigma = (\sigma_{ij})$ an irreducible elementary net of order $n\geq 3$ over $K$, and $\sigma_{ij}$ a $D$-modules. If the integer $d$ takes one of the following values (22 fields): $-1$, $-2$, $-3$, $-7$, $-11$, $-19$, $2$, $3$, $5$, $6$, $7$, $11$, $13$, $17$, $19$, $21$, $29$, $33$, $37$, $41$, $57$, $73$, then for some intermediate subring $P$, $D\subseteq P\subseteq K$, the net $\sigma$ is conjugated by a diagonal matrix of $D(n, K)$ with an elementary net of ideals of the ring $P$.
@article{VMJ_2020_22_4_a6,
     author = {V. A. Koibaev},
     title = {On the structure of elementary nets over quadratic fields},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {87--91},
     year = {2020},
     volume = {22},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2020_22_4_a6/}
}
TY  - JOUR
AU  - V. A. Koibaev
TI  - On the structure of elementary nets over quadratic fields
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2020
SP  - 87
EP  - 91
VL  - 22
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMJ_2020_22_4_a6/
LA  - ru
ID  - VMJ_2020_22_4_a6
ER  - 
%0 Journal Article
%A V. A. Koibaev
%T On the structure of elementary nets over quadratic fields
%J Vladikavkazskij matematičeskij žurnal
%D 2020
%P 87-91
%V 22
%N 4
%U http://geodesic.mathdoc.fr/item/VMJ_2020_22_4_a6/
%G ru
%F VMJ_2020_22_4_a6
V. A. Koibaev. On the structure of elementary nets over quadratic fields. Vladikavkazskij matematičeskij žurnal, Tome 22 (2020) no. 4, pp. 87-91. http://geodesic.mathdoc.fr/item/VMJ_2020_22_4_a6/

[1] Borevich Z. I., Shafarevich I. R., Number Theory, Academic Press, New York–London, 1966 | MR | MR | Zbl

[2] Atiyah M. F., Macdonald I. G., Introduction to Commutative Algebra, Addison–Wesley, 1969 | MR | Zbl

[3] Borevich Z. I., “Subgroups of Linear Groups Rich in Transvections”, Journal of Soviet Mathematics, 37:2 (1987), 928–934 | DOI | Zbl | Zbl

[4] Levchuk V. M., “Remark on a Theorem of L. Dickson”, Algebra and Logic, 22:4 (1983), 306–316 | DOI | MR | Zbl

[5] Koibaev V. A., “Elementary Nets in Linear Groups”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 17, no. 4, 2011, 134–141 (in Russian)

[6] The Kourovka Notebook: Unsolved Problems in Group Theory, 17 ed., Novosibirsk, 2010 (in Russian)

[7] Dryaeva R. Yu., Koibaev V. A., Nuzhin Ya. N., “Full and Elementary Nets Over the Field of Fractions of a Principal Ideal Ring”, Journal of Mathematical Sciences, 234:2 (2018), 141–147 | DOI | MR | Zbl

[8] Wilson J. C., “A principal ideal ring that is not a euclidean ring”, Mathematics Magazine, 46:1 (1973), 34–38 | DOI | MR | Zbl