Solutions of the Carleman system via the Painlevé expansion
Vladikavkazskij matematičeskij žurnal, Tome 22 (2020) no. 4, pp. 58-67 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The one-dimensional discrete kinetic system of Carleman equations is considered. This system describes a monatomic rarefied gas consisting of two groups of particles. These groups of particles move along a straight line, in opposite directions at a unit speed. Particles interact within one group, i. e. themselves, changing direction. Recently, special attention has been paid to the construction of exact solutions of non-integrable partial differential equations using the truncated Painlevé series. Applying the Painlevé expansion to non-integrable partial differential equations, we obtain the conditions in resonance that must be satisfied. Solution of the system is sought using the truncated Painlevé expansion. This system does not satisfy the Painlevé test. It leads to the singularity manifold constraints, one of which is the Bateman equation. Knowing the implicit solution of the Bateman equation, one can find new particular solutions of the Carleman system. Also, the solution is constructed using the rescaling ansatz, which allows us to reduce the problem to finding solutions to the corresponding Riccati equation.
@article{VMJ_2020_22_4_a4,
     author = {S. A. Dukhnovskii},
     title = {Solutions of the {Carleman} system via the {Painlev\'e} expansion},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {58--67},
     year = {2020},
     volume = {22},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2020_22_4_a4/}
}
TY  - JOUR
AU  - S. A. Dukhnovskii
TI  - Solutions of the Carleman system via the Painlevé expansion
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2020
SP  - 58
EP  - 67
VL  - 22
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMJ_2020_22_4_a4/
LA  - ru
ID  - VMJ_2020_22_4_a4
ER  - 
%0 Journal Article
%A S. A. Dukhnovskii
%T Solutions of the Carleman system via the Painlevé expansion
%J Vladikavkazskij matematičeskij žurnal
%D 2020
%P 58-67
%V 22
%N 4
%U http://geodesic.mathdoc.fr/item/VMJ_2020_22_4_a4/
%G ru
%F VMJ_2020_22_4_a4
S. A. Dukhnovskii. Solutions of the Carleman system via the Painlevé expansion. Vladikavkazskij matematičeskij žurnal, Tome 22 (2020) no. 4, pp. 58-67. http://geodesic.mathdoc.fr/item/VMJ_2020_22_4_a4/

[1] Lindblom O., Euler N., “Solutions of Discrete-Velocity Boltzmann Equations via Bateman and Riccati Equations”, Theoretical and Mathematical Physics, 131:2 (2002), 595–608 | DOI | DOI | MR | Zbl

[2] Godunov S. K., Sultangazin U. M., “On Discrete Models of the Kinetic Boltzmann Equation”, Russian Mathematical Surveys, 26:3 (1971), 1–56 | DOI | MR | Zbl

[3] Radkevich E. V., “On the Large-Time Behavior of Solutions to the Cauchy Problem for a 2-dimensional Discrete Kinetic Equation”, Journal of Mathematical Sciences, 202:5 (2014), 735–768 | DOI | MR | Zbl

[4] Dukhnovskii S. A., “On a Speed of Solutions Stabilization of the Cauchy Problem for the Carleman Equation with Periodic Initial Data”, J. Samara State Tech. Univ., Ser. Phys. Math. Sci., 21:1 (2017), 7–41 (in Russian) | DOI | Zbl

[5] Dukhnovskii S. A., “Asymptotic Stability of Equilibrium States for Carleman and Godunov–Sultangazin Systems of Equations”, Moscow University Mathematics Bulletin, 74:7 (2019), 246–248 | DOI | MR | Zbl

[6] Vasil'eva O. A., Dukhnovskii S. A., Radkevich E. A., “On the Nature of Local Equilibrium in the Carleman and Godunov-Sultangazin Equations”, Journal of Mathematical Sciences, 235 (2018), 392–454 | DOI | MR | Zbl

[7] Cabannes H., Dang Hong Tiem, “Exact Solutions for some Discrete Models of the Boltzmann Equation”, Complex Systems, 1:4 (1987), 575–584 | MR | Zbl

[8] Cornille H., “Exact $(2+1)$-dimensional solutions for two discrete velocity Boltzmann models with four independent densities”, J. Phys. A: Math. Gen., 20:16 (1987), 1063–1067 | DOI | MR

[9] Cornille H., “Exact $(1+1)$-dimensional solutions of discrete planar velocity Boltzmann models”, J. Stat. Phys., 48 (1987), 789–811 | DOI | MR | Zbl

[10] Il'in O. V., “Investigation of the Existence of Solutions and of the Stability of the Carleman Kinetic System”, Computational Mathematics and Mathematical Physics, 47:12 (2007), 1990–2001 | DOI | MR

[11] Il'in O. V., “Stationary Solutions of the Kinetic Broadwell Model”, Theoretical and Mathematical Physics, 170:3 (2012), 406–412 | DOI | DOI | MR

[12] Carleman T., Problèmes Mathématiques dans la Théorie Cinetique des Gaz, Publications Scientifiques de l'Institut Mittag-Leffler, Almqvist Wiksells, Uppsala, 1957, 112 pp. | MR | MR

[13] Platkowski T., Illner R., “Discrete velocity models of the Boltzmann equation: a survey on the mathematical aspects of the theory”, SIAM Review, 30:2 (1988), 213–255 | DOI | MR | Zbl

[14] Vedenyapin V., Sinitsyn A., Dulov E., Kinetic Boltzmann, Vlasov and Related Equations, Elsevier, Amsterdam, 2011, xiii+304 pp. | DOI | MR | Zbl

[15] Weiss J., Tabor M., Carnevale G., “The Painlevé property for partial diferential equation”, J. Math. Phys., 24:3 (1983), 522–526 | DOI | MR | Zbl

[16] Euler N., Lindblom O., Euler M., Persson L.-E., “The Higher dimensional Bateman equation and Painlevé analysis of nonintegrablee wave equations”, Symmetry in Nonlinear Mathematical Physics, 1 (1997), 185–192 | MR | Zbl