@article{VMJ_2020_22_4_a4,
author = {S. A. Dukhnovskii},
title = {Solutions of the {Carleman} system via the {Painlev\'e} expansion},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {58--67},
year = {2020},
volume = {22},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2020_22_4_a4/}
}
S. A. Dukhnovskii. Solutions of the Carleman system via the Painlevé expansion. Vladikavkazskij matematičeskij žurnal, Tome 22 (2020) no. 4, pp. 58-67. http://geodesic.mathdoc.fr/item/VMJ_2020_22_4_a4/
[1] Lindblom O., Euler N., “Solutions of Discrete-Velocity Boltzmann Equations via Bateman and Riccati Equations”, Theoretical and Mathematical Physics, 131:2 (2002), 595–608 | DOI | DOI | MR | Zbl
[2] Godunov S. K., Sultangazin U. M., “On Discrete Models of the Kinetic Boltzmann Equation”, Russian Mathematical Surveys, 26:3 (1971), 1–56 | DOI | MR | Zbl
[3] Radkevich E. V., “On the Large-Time Behavior of Solutions to the Cauchy Problem for a 2-dimensional Discrete Kinetic Equation”, Journal of Mathematical Sciences, 202:5 (2014), 735–768 | DOI | MR | Zbl
[4] Dukhnovskii S. A., “On a Speed of Solutions Stabilization of the Cauchy Problem for the Carleman Equation with Periodic Initial Data”, J. Samara State Tech. Univ., Ser. Phys. Math. Sci., 21:1 (2017), 7–41 (in Russian) | DOI | Zbl
[5] Dukhnovskii S. A., “Asymptotic Stability of Equilibrium States for Carleman and Godunov–Sultangazin Systems of Equations”, Moscow University Mathematics Bulletin, 74:7 (2019), 246–248 | DOI | MR | Zbl
[6] Vasil'eva O. A., Dukhnovskii S. A., Radkevich E. A., “On the Nature of Local Equilibrium in the Carleman and Godunov-Sultangazin Equations”, Journal of Mathematical Sciences, 235 (2018), 392–454 | DOI | MR | Zbl
[7] Cabannes H., Dang Hong Tiem, “Exact Solutions for some Discrete Models of the Boltzmann Equation”, Complex Systems, 1:4 (1987), 575–584 | MR | Zbl
[8] Cornille H., “Exact $(2+1)$-dimensional solutions for two discrete velocity Boltzmann models with four independent densities”, J. Phys. A: Math. Gen., 20:16 (1987), 1063–1067 | DOI | MR
[9] Cornille H., “Exact $(1+1)$-dimensional solutions of discrete planar velocity Boltzmann models”, J. Stat. Phys., 48 (1987), 789–811 | DOI | MR | Zbl
[10] Il'in O. V., “Investigation of the Existence of Solutions and of the Stability of the Carleman Kinetic System”, Computational Mathematics and Mathematical Physics, 47:12 (2007), 1990–2001 | DOI | MR
[11] Il'in O. V., “Stationary Solutions of the Kinetic Broadwell Model”, Theoretical and Mathematical Physics, 170:3 (2012), 406–412 | DOI | DOI | MR
[12] Carleman T., Problèmes Mathématiques dans la Théorie Cinetique des Gaz, Publications Scientifiques de l'Institut Mittag-Leffler, Almqvist Wiksells, Uppsala, 1957, 112 pp. | MR | MR
[13] Platkowski T., Illner R., “Discrete velocity models of the Boltzmann equation: a survey on the mathematical aspects of the theory”, SIAM Review, 30:2 (1988), 213–255 | DOI | MR | Zbl
[14] Vedenyapin V., Sinitsyn A., Dulov E., Kinetic Boltzmann, Vlasov and Related Equations, Elsevier, Amsterdam, 2011, xiii+304 pp. | DOI | MR | Zbl
[15] Weiss J., Tabor M., Carnevale G., “The Painlevé property for partial diferential equation”, J. Math. Phys., 24:3 (1983), 522–526 | DOI | MR | Zbl
[16] Euler N., Lindblom O., Euler M., Persson L.-E., “The Higher dimensional Bateman equation and Painlevé analysis of nonintegrablee wave equations”, Symmetry in Nonlinear Mathematical Physics, 1 (1997), 185–192 | MR | Zbl