@article{VMJ_2020_22_4_a3,
author = {M. Kh. Beshtokov and Z. V. Beshtokova and M. Z. Khudalov},
title = {Finite-difference method for solving of a nonlocal boundary value problem for a loaded thermal conductivity equation of the fractional order},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {45--57},
year = {2020},
volume = {22},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2020_22_4_a3/}
}
TY - JOUR AU - M. Kh. Beshtokov AU - Z. V. Beshtokova AU - M. Z. Khudalov TI - Finite-difference method for solving of a nonlocal boundary value problem for a loaded thermal conductivity equation of the fractional order JO - Vladikavkazskij matematičeskij žurnal PY - 2020 SP - 45 EP - 57 VL - 22 IS - 4 UR - http://geodesic.mathdoc.fr/item/VMJ_2020_22_4_a3/ LA - ru ID - VMJ_2020_22_4_a3 ER -
%0 Journal Article %A M. Kh. Beshtokov %A Z. V. Beshtokova %A M. Z. Khudalov %T Finite-difference method for solving of a nonlocal boundary value problem for a loaded thermal conductivity equation of the fractional order %J Vladikavkazskij matematičeskij žurnal %D 2020 %P 45-57 %V 22 %N 4 %U http://geodesic.mathdoc.fr/item/VMJ_2020_22_4_a3/ %G ru %F VMJ_2020_22_4_a3
M. Kh. Beshtokov; Z. V. Beshtokova; M. Z. Khudalov. Finite-difference method for solving of a nonlocal boundary value problem for a loaded thermal conductivity equation of the fractional order. Vladikavkazskij matematičeskij žurnal, Tome 22 (2020) no. 4, pp. 45-57. http://geodesic.mathdoc.fr/item/VMJ_2020_22_4_a3/
[1] Samarsky A. A., The Theory of Difference Schemes, Nauka, M., 1983, 616 pp. (in Russian) | MR
[2] Tikhonov A. N., Samarsky A. A., Equations of Mathematical Physics, Nauka, M., 1977, 735 pp. (in Russian) | MR
[3] Samarsky A. A., On One Problem of Heat Propagation, Selected Works A. A. Samarsky, MAKS Press, M., 2003, 531 pp. (in Russian) | MR
[4] Nerpin S. V., Chudnovsky A. F., Energy- and mass transfer in a system plant–soil–air, Gidrometeoizdat, L., 1975, 358 pp. (in Russian)
[5] Nigmatullin P. P., “Features of Relaxation of a System with “Residual” Memory”, Physics of the Solid State, 27:5 (1985), 1583–1585 (in Russian)
[6] Tarasov V. E., Models of Theoretical Physics with Fractional Order Integro-Differentiation, Izhevsk Institute for Computer Research, M.–Izhevsk, 2011, 568 pp. (in Russian)
[7] Nakhushev A. M., Fractional Calculus and its Application, Fizmatlit, M., 2003, 272 pp. (in Russian)
[8] Uchaykin V. V., The Method of Fractional Derivatives, Artichoke Publ., Ulyanovsk, 2008, 512 pp. (in Russian)
[9] Mandelbrot B. B., The Fractal Geometry of Nature, W. H. Freeman and Company, N. Y., 1982, 460 pp. | MR | Zbl
[10] Begli R. L., Torvik P. J., “Differential Calculus Based On Fractional Order Derivatives: A New Approach for Calculating Construction with Viscoelastic Damping”, Aerokosmicheskaya Tekhnika, 2:2 (1984), 84–93 (in Russian)
[11] Alikhanov A. A., “A Priori Estimates for Solutions of Boundary Value Problems for Fractional-Order Equations”, Differential Equations, 46:5 (2010), 660–666 | DOI | MR | Zbl
[12] Alikhanov A. A., “A new difference scheme for the time fractional diffusion equation”, J. Comput. Phys., 280 (2015), 424–438 | DOI | MR | Zbl
[13] Beshtokov M. Kh., “To Boundary Value Problems for Degenerating Pseudoparabolic Equations with Gerasimov–Caputo Fractional Derivative”, Russian Mathematics, 62 (2018), 1–14 | DOI | MR | Zbl
[14] Beshtokov M. Kh., “Boundary Value Problems for a Pseudoparabolic Equation with a Fractional Caputo Derivative”, Differential Equations, 55:7 (2019), 884–893 | DOI | DOI | MR | Zbl
[15] Beshtokov M. Kh., Vodakhova V. A., “Nonlocal Boundary Value Problems for Fractional Convection-Diffusion Equations”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 29:4 (2019), 459–482 (in Russian) | DOI | MR
[16] Beshtokov M. Kh., Erzhibova F. A., “On Boundary Value Problems For Integro-Differential Equations of Fractional Order”, Matematicheskie Trudy, 23:1 (2020), 16–36 (in Russian) | DOI | MR
[17] Beshtokov M. Kh., Khudalov M. Z., “Difference methods of the solution of local and non-local boundary value problems for loaded equation of thermal conductivity of fractional order”, Stability, Control and Differential Games, Lect. Notes Control Inform. Sci., 2020, 187–201 | DOI | Zbl
[18] Khudalov M. Z., “Nonlocal Boundary Value Problem for a Loaded Parabolic Equation”, Vladikavkaz Mathematical Journal, 4:4 (2002), 59–64 (in Russian) | MR | Zbl
[19] Alikhanov A. A., Berezgov A. M., Shkhanukov-Lafishev M. X., “Boundary Value Problems for Certain Classes of Loaded Differential Equations and Solving them by Finite Difference Methods”, Computational Mathematics and Mathematical Physics, 48:9 (2008), 1581–1590 | DOI | MR