A convolution type nonlinear integro-differential equation with a variable coefficient and an inhomogeneity in the linear part
Vladikavkazskij matematičeskij žurnal, Tome 22 (2020) no. 4, pp. 16-27 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study a Volterra integro-differential equation of convolution type with a power nonlinearity, variable coefficient $a(x)$ and an inhomogeneity $f(x)$ in the linear part, which is closely related to the corresponding nonlinear integral equation, arising in the study of fluid infiltration from a cylindrical reservoir\eject into an isotropic homogeneous porous medium, when describing the process of propagation of shock waves in gas-filled pipes, when solving the problem about heating a half-infinite body in a nonlinear heat-transfer process, in models of population genetics, and others. It is important to note that in relation to the above-mentioned and other applications, of special interest are continuous positive (for $x > 0$) solutions of the integral equation. Based on the obtained exact lower and upper a priori estimates for the solution of the integral equation, we construct a weighted complete metric space $P_b$, invariant with respect to the nonlinear integral convolution operator generated by this equation, and, using the method of weighted metrics (an analogue of Belitsky's method), we prove the global existence theorem and the uniqueness of the solution of the nonlinear integro-differential equation under study both in the space $P_b$ and in the whole class $Q_0^1$ of continuously differentiable functions positive for $x>0$. It is shown that the solution can be found in the $P_b$ space by a successive approximation method of the Picard type. Estimates for the rate of convergence of the successive approximations to the exact solution in terms of the weight metric of the space $P_b$ are derived. In particular, for $f(x)=0$, this theorem implies that the corresponding homogeneous nonlinear integro-differential equation, in contrast to the linear case, has a nontrivial solution. Examples are also given to illustrate the results obtained.
@article{VMJ_2020_22_4_a1,
     author = {S. N. Askhabov},
     title = {A convolution type nonlinear integro-differential equation with a variable coefficient and an inhomogeneity in the linear part},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {16--27},
     year = {2020},
     volume = {22},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2020_22_4_a1/}
}
TY  - JOUR
AU  - S. N. Askhabov
TI  - A convolution type nonlinear integro-differential equation with a variable coefficient and an inhomogeneity in the linear part
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2020
SP  - 16
EP  - 27
VL  - 22
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMJ_2020_22_4_a1/
LA  - ru
ID  - VMJ_2020_22_4_a1
ER  - 
%0 Journal Article
%A S. N. Askhabov
%T A convolution type nonlinear integro-differential equation with a variable coefficient and an inhomogeneity in the linear part
%J Vladikavkazskij matematičeskij žurnal
%D 2020
%P 16-27
%V 22
%N 4
%U http://geodesic.mathdoc.fr/item/VMJ_2020_22_4_a1/
%G ru
%F VMJ_2020_22_4_a1
S. N. Askhabov. A convolution type nonlinear integro-differential equation with a variable coefficient and an inhomogeneity in the linear part. Vladikavkazskij matematičeskij žurnal, Tome 22 (2020) no. 4, pp. 16-27. http://geodesic.mathdoc.fr/item/VMJ_2020_22_4_a1/

[1] Gakhov F. D., Cherskii Yu. I., Equations of Convolution Type, Nauka, M., 1978, 296 pp. (in Russian) | MR

[2] Prossdorf S., Einige Klassen Singularer Gleichungen, Akademie-Verlag, Berlin, 1974, 369 pp. | MR | Zbl

[3] Askhabov S. N., Nonlinear Equations of Convolution Type, Fizmatlit, M., 2009, 304 pp. (in Russian) | MR

[4] Brunner H., Volterra Integral Equations: an Introduction to the Theory and Applications, Cambridge Univ. Press, Cambridge, 2017, 387 pp. | DOI | MR

[5] Askhabov S. N., Karapetyants N. K., Yakubov A. Ya., “Integral Equations of Convolution Type with a Power Nonlinearity and their Systems”, Soviet Mathematics Doklady, 41:2 (1990), 323–327 | MR | Zbl

[6] Askhabov S. N., Betilgiriev M. A., “A-priori estimates for the solutions of a class of nonlinear convolution equations”, Zeitschrift fur Analysis und ihre Anwendungen, 10:2 (1991), 201–204 | DOI | MR | Zbl

[7] Kilbas A. A., Saigo M., “On solution of nonlinear Abel–Volterra integral equations”, J. Math. Anal. Appl., 229:1 (1999), 41–60 | DOI | MR | Zbl

[8] Karapetiants N. K., Kilbas A. A., Saigo M., Samko S. G., “Upper and lower bounds for solutions of nonlinear Volterra convolution integral equations with power nonlinearity”, J. Integr. Equat. Appl., 12:4 (2001), 421–448 | DOI | MR

[9] Okrasinski W., “Nonlinear Volterra equations and physical applications”, Extracta Math., 4:2 (1989), 51–74 | MR

[10] Edwards R. E., Functional Analysis: Theory and Applications, Holt, Rinehart, and Winston, New York, 1965, 1072 pp. | MR | Zbl

[11] Askhabov S. N., “Integro-Differential Equation of the Convolution Type with a Power Nonlinearity and Inhomogeneity in the Linear Part”, Differential Equations, 56:6 (2020), 775–784 | DOI | DOI | MR | Zbl

[12] Okrasinski W., “On the existence and uniqueness of nonnegative solutions of a certain nonlinear convolution equation”, Annal. Polon. Math., 36:1 (1979), 61–72 | DOI | MR | Zbl