@article{VMJ_2020_22_4_a1,
author = {S. N. Askhabov},
title = {A convolution type nonlinear integro-differential equation with a variable coefficient and an inhomogeneity in the linear part},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {16--27},
year = {2020},
volume = {22},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2020_22_4_a1/}
}
TY - JOUR AU - S. N. Askhabov TI - A convolution type nonlinear integro-differential equation with a variable coefficient and an inhomogeneity in the linear part JO - Vladikavkazskij matematičeskij žurnal PY - 2020 SP - 16 EP - 27 VL - 22 IS - 4 UR - http://geodesic.mathdoc.fr/item/VMJ_2020_22_4_a1/ LA - ru ID - VMJ_2020_22_4_a1 ER -
%0 Journal Article %A S. N. Askhabov %T A convolution type nonlinear integro-differential equation with a variable coefficient and an inhomogeneity in the linear part %J Vladikavkazskij matematičeskij žurnal %D 2020 %P 16-27 %V 22 %N 4 %U http://geodesic.mathdoc.fr/item/VMJ_2020_22_4_a1/ %G ru %F VMJ_2020_22_4_a1
S. N. Askhabov. A convolution type nonlinear integro-differential equation with a variable coefficient and an inhomogeneity in the linear part. Vladikavkazskij matematičeskij žurnal, Tome 22 (2020) no. 4, pp. 16-27. http://geodesic.mathdoc.fr/item/VMJ_2020_22_4_a1/
[1] Gakhov F. D., Cherskii Yu. I., Equations of Convolution Type, Nauka, M., 1978, 296 pp. (in Russian) | MR
[2] Prossdorf S., Einige Klassen Singularer Gleichungen, Akademie-Verlag, Berlin, 1974, 369 pp. | MR | Zbl
[3] Askhabov S. N., Nonlinear Equations of Convolution Type, Fizmatlit, M., 2009, 304 pp. (in Russian) | MR
[4] Brunner H., Volterra Integral Equations: an Introduction to the Theory and Applications, Cambridge Univ. Press, Cambridge, 2017, 387 pp. | DOI | MR
[5] Askhabov S. N., Karapetyants N. K., Yakubov A. Ya., “Integral Equations of Convolution Type with a Power Nonlinearity and their Systems”, Soviet Mathematics Doklady, 41:2 (1990), 323–327 | MR | Zbl
[6] Askhabov S. N., Betilgiriev M. A., “A-priori estimates for the solutions of a class of nonlinear convolution equations”, Zeitschrift fur Analysis und ihre Anwendungen, 10:2 (1991), 201–204 | DOI | MR | Zbl
[7] Kilbas A. A., Saigo M., “On solution of nonlinear Abel–Volterra integral equations”, J. Math. Anal. Appl., 229:1 (1999), 41–60 | DOI | MR | Zbl
[8] Karapetiants N. K., Kilbas A. A., Saigo M., Samko S. G., “Upper and lower bounds for solutions of nonlinear Volterra convolution integral equations with power nonlinearity”, J. Integr. Equat. Appl., 12:4 (2001), 421–448 | DOI | MR
[9] Okrasinski W., “Nonlinear Volterra equations and physical applications”, Extracta Math., 4:2 (1989), 51–74 | MR
[10] Edwards R. E., Functional Analysis: Theory and Applications, Holt, Rinehart, and Winston, New York, 1965, 1072 pp. | MR | Zbl
[11] Askhabov S. N., “Integro-Differential Equation of the Convolution Type with a Power Nonlinearity and Inhomogeneity in the Linear Part”, Differential Equations, 56:6 (2020), 775–784 | DOI | DOI | MR | Zbl
[12] Okrasinski W., “On the existence and uniqueness of nonnegative solutions of a certain nonlinear convolution equation”, Annal. Polon. Math., 36:1 (1979), 61–72 | DOI | MR | Zbl