Some subordination results for certain class with complex order defined by Salagean type $q$-difference operator
Vladikavkazskij matematičeskij žurnal, Tome 22 (2020) no. 4, pp. 7-15 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The theory of the basic quantum calculus (that is, the basic $q$-calculus) plays important roles in many diverse areas of the engineering, physical and mathematical science. Making use of the basic definitions and concept details of the $q$-calculus, Govindaraj and Sivasubramanian [10] defined the Salagean type $q$-difference ($q$-derivative) operator. In this paper, we introduce a certain subclass of analytic functions with complex order in the open unit disk by applying the Salagean type $q$-derivative operator in conjunction with the familiar principle of subordination between analytic functions. Also, we derive some geometric properties such as sufficient condition and several subordination results for functions belonging to this subclass. The results presented here would provide extensions of those given in earlier works.
@article{VMJ_2020_22_4_a0,
     author = {M. K. Aouf and T. M. Seoudy},
     title = {Some subordination results for certain class with complex order defined by {Salagean} type $q$-difference operator},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {7--15},
     year = {2020},
     volume = {22},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2020_22_4_a0/}
}
TY  - JOUR
AU  - M. K. Aouf
AU  - T. M. Seoudy
TI  - Some subordination results for certain class with complex order defined by Salagean type $q$-difference operator
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2020
SP  - 7
EP  - 15
VL  - 22
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMJ_2020_22_4_a0/
LA  - en
ID  - VMJ_2020_22_4_a0
ER  - 
%0 Journal Article
%A M. K. Aouf
%A T. M. Seoudy
%T Some subordination results for certain class with complex order defined by Salagean type $q$-difference operator
%J Vladikavkazskij matematičeskij žurnal
%D 2020
%P 7-15
%V 22
%N 4
%U http://geodesic.mathdoc.fr/item/VMJ_2020_22_4_a0/
%G en
%F VMJ_2020_22_4_a0
M. K. Aouf; T. M. Seoudy. Some subordination results for certain class with complex order defined by Salagean type $q$-difference operator. Vladikavkazskij matematičeskij žurnal, Tome 22 (2020) no. 4, pp. 7-15. http://geodesic.mathdoc.fr/item/VMJ_2020_22_4_a0/

[1] Bulboacă T., Differential Subordinations and Superordinations, New Results, House of Scientific Boook Publ., Cluj-Napoca, 2005

[2] Miller S. S., Mocanu P. T., Differential Subordinations. Theory and Applications, Series on Monographs and Textbooks in Pure and Appl. Math., 255, Marcel Dekker Inc., New York, 2000, 480 pp. | DOI | MR

[3] Annaby M. H., Mansour Z. S., $q$-Fractional Calculus and Equations, Lecture Notes in Mathematics, 2056, Springer-Verlag, Berlin, 2012 | DOI | MR | Zbl

[4] Aouf M. K., Seoudy T. M., “Convolution Properties for Classes of Bounded Analytic Functions with Complex Order Defined by $q$-Derivative Operator”, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 113:2 (2019), 1279–1288 | DOI | MR | Zbl

[5] Aral A., Gupta V., Agarwal R. P., Applications of $q$-Calculus in Operator Theory, Springer, New York, 2013 | DOI | MR | Zbl

[6] Gasper G., Rahman M., Basic Hypergeometric Series, Cambridge University Press, Cambridge, 1990, xx+287 pp. | MR | Zbl

[7] Jackson F. H., “On $q$-Functions and a Certain Difference Operator”, Transactions of the Royal Society of Edinburgh, 46 (1908), 253–281 | DOI

[8] Seoudy T. M., Aouf M. K., “Convolution Properties for Certain Classes of Analytic Functions Defined by $q$-Derivative Operator”, Abstract and Applied Analysis, 2014, 846719, 1–7 | DOI | MR

[9] Seoudy T. M., Aouf M. K., “Coefficient Estimates of New Classes of $q$-Starlike and $q$-Convex Functions of Complex Order”, Journal of Mathematical Inequalities, 10:1 (2016), 135–145 | DOI | MR | Zbl

[10] Govindaraj M., Sivasubramanian S., “On a Class of Analytic Functions Related to Conic Domains Involving $q$-Calculus”, Analysis Mathematica, 43:3 (2017), 475–487 | DOI | MR | Zbl

[11] Salagean G. S., “Subclasses of Univalent Functions”, Lecture Notes in Mathematics, 1013, Springer-Verlag, Berlin, 1983, 362–372 | DOI | MR

[12] Aouf M. K., Srivastava H. M., “Some Families of Starlike Functions with Negative Coefficients”, Journal of Mathematical Analysis and Applications, 203:3 (1996), 762–790 | DOI | MR | Zbl

[13] Sivasubramanian S., Mohammed A., Darus M., “Certain Subordination Properties for Subclasses of Analytic Functions Involving Complex Order”, Abstract and Applied Analysis, 2011, 1–8 | DOI | MR

[14] Aouf M. K., “Subordination Properties for a Certain Class of Analytic Functions Defined by the Salagean Operator”, Applied Mathematics Letters, 22:10 (2009), 1581–1585 | DOI | MR | Zbl

[15] Wilf H. S., “Subordinating Factor Sequence for Convex Maps of the Unit Circle”, Proceedings of the American Mathematical Society, 12 (1961), 689–693 | DOI | MR | Zbl

[16] Attiya A. A., “On Some Application of a Subordination Theorems”, Journal of Mathematical Analysis and Applications, 311:2 (2005), 489–494 | DOI | MR | Zbl

[17] Srivastava H. M., Attiya A. A., “Some Subordination Results Associated with Certain Subclass of Analytic Functions”, Journal of Inequalities in Pure and Applied Mathematics, 5:4 (2004), 1–6 | MR

[18] Aouf M. K., Mostafa A. O., “Some Subordination Results for Classes of Analytic Functions Defined by the Al-Oboudi-Al-Amoudi”, Archiv der Mathematik, 92 (2009), 279–286 | DOI | MR | Zbl

[19] Aouf M. K., Shamandy A. A., Mostafa O., El-Emam F., “Subordination Results Associated with $\beta$-Uniformly Convex and Starlike Functions”, Proceedings of the Pakistan Academy of Sciences, 46:2 (2009), 97–101 | MR

[20] Aouf M. K., Shamandy A., Mostafa A. O., Adwan E. A., “Subordination Results for Certain Class of Analytic Functions Defined by Convolution”, Rendiconti del Circolo Matematico di Palermo, 60 (2011), 255–262 | DOI | MR | Zbl

[21] Aouf M. K., Shamandy A., Mostafa A. O., Adwan E. A., “Subordination Theorem for Analytic Functions Defined by Convolution”, Complex Analysis and Operator Theory, 7 (2013), 1117–1126 | DOI | MR | Zbl

[22] Bulut S., Aouf M. K., “Subordination Properties for a Certain Class of Analytic Functions with Complex Order”, Le Matematiche, 69:2 (2014), 117–128 | MR | Zbl