Bounded composition operators on weighted function spaces in the unit disk
Vladikavkazskij matematičeskij žurnal, Tome 22 (2020) no. 3, pp. 112-123
Voir la notice de l'article provenant de la source Math-Net.Ru
We introduce a general class of weighted spaces $\mathscr{H}(\beta)$ of holomorphic functions in the unit disk $\mathbb{D}$, which contains several classical spaces, such as Hardy space, Bergman space, Dirichlet space. We characterize boundedness of composition operators $C_{\varphi}$ induced by affine and monomial symbols $\varphi$ on these spaces $\mathscr{H}(\beta)$. We also establish a sufficient condition under which the operator $C_{\varphi}$ induced by the symbol $\varphi$ with relatively compact image $\varphi(\mathbb{D})$ in $\mathbb{D}$ is bounded on $\mathscr{H}(\beta)$. Note that in the setting of $\mathscr{H}(\beta)$, the characterizations of boundedness of composition operators $C_{\varphi}$ depend closely not only on functional properties of the symbols $\varphi$ but also on the behavior of the weight sequence $\beta$.
@article{VMJ_2020_22_3_a8,
author = {Sh. Hua and Le Hai Khoi and Ph. T. Tien},
title = {Bounded composition operators on weighted function spaces in the unit disk},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {112--123},
publisher = {mathdoc},
volume = {22},
number = {3},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2020_22_3_a8/}
}
TY - JOUR AU - Sh. Hua AU - Le Hai Khoi AU - Ph. T. Tien TI - Bounded composition operators on weighted function spaces in the unit disk JO - Vladikavkazskij matematičeskij žurnal PY - 2020 SP - 112 EP - 123 VL - 22 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMJ_2020_22_3_a8/ LA - en ID - VMJ_2020_22_3_a8 ER -
Sh. Hua; Le Hai Khoi; Ph. T. Tien. Bounded composition operators on weighted function spaces in the unit disk. Vladikavkazskij matematičeskij žurnal, Tome 22 (2020) no. 3, pp. 112-123. http://geodesic.mathdoc.fr/item/VMJ_2020_22_3_a8/