Bounded composition operators on weighted function spaces in the unit disk
Vladikavkazskij matematičeskij žurnal, Tome 22 (2020) no. 3, pp. 112-123 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We introduce a general class of weighted spaces $\mathscr{H}(\beta)$ of holomorphic functions in the unit disk $\mathbb{D}$, which contains several classical spaces, such as Hardy space, Bergman space, Dirichlet space. We characterize boundedness of composition operators $C_{\varphi}$ induced by affine and monomial symbols $\varphi$ on these spaces $\mathscr{H}(\beta)$. We also establish a sufficient condition under which the operator $C_{\varphi}$ induced by the symbol $\varphi$ with relatively compact image $\varphi(\mathbb{D})$ in $\mathbb{D}$ is bounded on $\mathscr{H}(\beta)$. Note that in the setting of $\mathscr{H}(\beta)$, the characterizations of boundedness of composition operators $C_{\varphi}$ depend closely not only on functional properties of the symbols $\varphi$ but also on the behavior of the weight sequence $\beta$.
@article{VMJ_2020_22_3_a8,
     author = {Sh. Hua and Le Hai Khoi and Ph. T. Tien},
     title = {Bounded composition operators on weighted function spaces in the unit disk},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {112--123},
     year = {2020},
     volume = {22},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2020_22_3_a8/}
}
TY  - JOUR
AU  - Sh. Hua
AU  - Le Hai Khoi
AU  - Ph. T. Tien
TI  - Bounded composition operators on weighted function spaces in the unit disk
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2020
SP  - 112
EP  - 123
VL  - 22
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMJ_2020_22_3_a8/
LA  - en
ID  - VMJ_2020_22_3_a8
ER  - 
%0 Journal Article
%A Sh. Hua
%A Le Hai Khoi
%A Ph. T. Tien
%T Bounded composition operators on weighted function spaces in the unit disk
%J Vladikavkazskij matematičeskij žurnal
%D 2020
%P 112-123
%V 22
%N 3
%U http://geodesic.mathdoc.fr/item/VMJ_2020_22_3_a8/
%G en
%F VMJ_2020_22_3_a8
Sh. Hua; Le Hai Khoi; Ph. T. Tien. Bounded composition operators on weighted function spaces in the unit disk. Vladikavkazskij matematičeskij žurnal, Tome 22 (2020) no. 3, pp. 112-123. http://geodesic.mathdoc.fr/item/VMJ_2020_22_3_a8/

[1] Cowen C. C., MacCluer B. D., Composition Operators on Spaces of Analytic Functions, CRC Press, Boca Raton, 1995 | MR | Zbl

[2] Shapiro J. H., Compositions Operators and Classical Function Theory, Springer-Verlag, New York, 1993 | MR

[3] Zhu K., Operator Theory in Function Spaces, 2nd edition, Amer. Math. Soc., Providence, R. I., 2007 | MR | Zbl

[4] Bonet J., Domański P., Lindström M., Taskinen J., “Composition Operators Between Banach Spaces of Analytic Functions”, Journal of the Australian Mathematical Society (Series A), 64 (1998), 101–118 | DOI | MR | Zbl

[5] Chalendar I., Gallardo-Gutierrez E. A., Partington J. R., “Weighted Composition Operators on the Dirichlet Space: Boundedness and Spectral Properties”, Mathematische Annalen, 363 (2015), 1265–1279 | DOI | MR | Zbl

[6] Contreras M. D., Hernández-Díaz A. G., “Weighted Composition Operators in Weighted Banach Spaces of Analytic Functions”, Journal of the Australian Mathematical Society (Series A), 69 (2000), 41–60 | DOI | MR | Zbl

[7] Izuchi K. J., Ohno S., “Path Connected Components in Weighted Composition Operators on $h^{\infty}$ and $H^{\infty}$ with the Operator Norm”, Transactions of the American Mathematical Society, 365:7 (2013), 3593–3612 | DOI | MR | Zbl

[8] MacCluer B. D., Shapiro J. H., “Angular Derivatives and Compact Composition Operators on the Hardy and Bergman Spaces”, Canadian Journal of Mathematics, 38 (1986), 878–906 | DOI | MR | Zbl

[9] Shapiro J. H., Sundberg C., “Isolation Amongst the Composition Operators”, Pacific Journal of Mathematics, 145:1 (1990), 117–152 | DOI | MR | Zbl

[10] Tan P. L., Khoi L. H., “Bounded Composition Operators on General Weighted Hardy Spaces”, Complex Analysis and Operator Theory, 14 (2020), 54 | DOI | MR | Zbl

[11] Shields A. L., “Weighted Shift Operators and Analytic Function Theory”, Topics in Operator Theory, Mathematical Surveys and Monographs, 13, Amer. Math. Soc., Providence, R. I., 1974, 49 pp. | MR