@article{VMJ_2020_22_3_a7,
author = {I. Kh. Musin},
title = {{\CYRO}n a space of holomorphic functions on a bounded convex domain of ${\mathbb C}^n$ and smooth up to the boundary and its dual space},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {100--111},
year = {2020},
volume = {22},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2020_22_3_a7/}
}
TY - JOUR
AU - I. Kh. Musin
TI - Оn a space of holomorphic functions on a bounded convex domain of ${\mathbb C}^n$ and smooth up to the boundary and its dual space
JO - Vladikavkazskij matematičeskij žurnal
PY - 2020
SP - 100
EP - 111
VL - 22
IS - 3
UR - http://geodesic.mathdoc.fr/item/VMJ_2020_22_3_a7/
LA - ru
ID - VMJ_2020_22_3_a7
ER -
%0 Journal Article
%A I. Kh. Musin
%T Оn a space of holomorphic functions on a bounded convex domain of ${\mathbb C}^n$ and smooth up to the boundary and its dual space
%J Vladikavkazskij matematičeskij žurnal
%D 2020
%P 100-111
%V 22
%N 3
%U http://geodesic.mathdoc.fr/item/VMJ_2020_22_3_a7/
%G ru
%F VMJ_2020_22_3_a7
I. Kh. Musin. Оn a space of holomorphic functions on a bounded convex domain of ${\mathbb C}^n$ and smooth up to the boundary and its dual space. Vladikavkazskij matematičeskij žurnal, Tome 22 (2020) no. 3, pp. 100-111. http://geodesic.mathdoc.fr/item/VMJ_2020_22_3_a7/
[1] Derjavets B. A., Differential Operators with Constant Coefficients in Spaces of Analytic Functions of Several Complex Variables, Thesis, RSU, Rostov-on-Don, 1983, 102 pp. (in Russian)
[2] Musin I. Kh., “Spaces of functions holomorphic in convex bounded domains of ${\mathbb C}^n$ and smooth up to the boundary”, Advances in Mathematics Research, Nova Science Publishers, New York, 2002, 63–74 | MR
[3] Petrov S. V., “Existence of Absolutely Representing Systems of Exponentials in Spaces of Analytic Functions”, Bulletin of Higher Education Institutes. North Caucasus Region. Natural Sciences, 2010, no. 5, 25–31 (in Russian) | MR
[4] Isaev K. P., “Representing Systems of Exponentials in Projective Limits of Weigth Subspaces of $A^{\infty}(D)$”, Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 1, 29–41 (in Russian) | DOI | Zbl
[5] Abanin A. V., Petrov S. V., “Minimal Absolutely Representing Systems of Exponential Functions in Spaces of Analytic Functions with Given Boundary Smoothness”, Vladikavkaz Math. J., 14:3 (2012), 13–30 (in Russian) | MR | Zbl
[6] Dyn'kin E. M., “Pseudoanalytic extension of smooth functions. The uniform scale”, Amer. Math. Soc. Transl., 115:2 (1980), 33–58 | Zbl
[7] Leont'ev A. F., Rows of Exhibitors, Nauka, M., 1976, 536 pp. (in Russian) | MR
[8] Korobeinik Yu. F., “Representing Systems”, Russian Math. Surveys, 36:1 (1981), 75–137 | DOI | MR | Zbl
[9] Neymark M., “On the Laplace transform of functionals on classes of infinitely differentiable functions”, Ark. Math., 7:6 (1969), 577–594 | DOI | MR | Zbl
[10] Taylor B. A., “Analytically uniform spaces of infinitely differentiable functions”, Commun. on Pure and Appl. Math., 24:1 (1971), 39–51 | DOI | MR | Zbl
[11] Musin I. Kh., Yakovleva P. V., “On a space of smooth functions on a convex unbounded set in admitting holomorphic extension in ${\mathbb C}^n$”, Central European Journal of Mathematics, 10:2 (2012), 665–692 | DOI | MR | Zbl
[12] Sebashtyan-i-Silva Zh., “Some Classes of Locally Convex Spaces that are Important in”, Maths. Collection of Translations, 1:1 (1957), 60–77
[13] Zharinov V. V., “Compact Families of Locally Convex Topological Vector Spaces, Frechet–Schwartz and Dual Frechet–Schwartz Spaces”, Russian Math. Surveys, 34:4 (1979), 105–143 | DOI | MR | Zbl | Zbl
[14] Valiron G., Analytic Functions, Gostekhizdat, M., 1957, 235 pp. (in Russian)
[15] Edwards R. E., Functional Analysis. Theory and Applications, Holt, Pineart and Winston, New York–Toronto–London, 1965, 781 pp. | MR | Zbl
[16] Musin I. Kh., “Fourier–Laplace Transformation of Functionals on a Weighted Space of Infinitely Smooth Functions”, Sb. Math., 191:10 (2000), 1477–1506 | DOI | MR | Zbl
[17] Hörmander L., The Analysis of Linear Partial Differential Operators, v. II, Differential Operators with Constant Coefficients, Springer Verlag, Berlin, 1983, 389 pp. | MR
[18] Napalkov V. V., Convolution Equations in Multidimensional Spaces, Nauka, M., 1982, 240 pp. (in Russian)
[19] Robertson A. P., Robertson W. J., Topological Vector Spaces, Cambridge Univ. Press, Cambridge, 1964, 158 pp. | MR | MR | Zbl