Unconditional bases in radial Hilbert spaces
Vladikavkazskij matematičeskij žurnal, Tome 22 (2020) no. 3, pp. 85-99 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a Hilbert space of entire functions $H$ that satisfies the conditions: 1) $H$ is functional, that is the evaluation functionals $\delta _z: f\rightarrow f(z)$ are continuous for every $z\in \mathbb{C}$; 2) $H$ has the division property, that is, if $F\in H$, $F(z_0)=0$, then $F(z)(z-z_0)^{-1}\in H$; 3) $H$ is radial, that is, if $F\in H$ and $\varphi \in \mathbb R$, then the function $F(ze^{i\varphi })$ lies in $H$, and $\|F(ze^{i\varphi })\|= \|F\|$; 4) polynomials are complete in $H$ and $\|z^n\|\asymp e^{u(n)},$ $n\in \mathbb N\cup \{0\},$ where the sequence $u(n)$ satisfies the condition $u(n+1)+u(n-1)-2u(n)\succ n^\delta ,$ $n\in \mathbb N,$ for some $\delta >0$. It follows from condition 1) that every functional $\delta _z$ is generated by an element $k_z(\lambda )\in H$ in the sense of $\delta _z(f)=(f(\lambda ),k_z(\lambda )).$ The function $k(\lambda, z)=k_z(\lambda )$ is called the reproducing kernel of the space $H$. A basis $\{ e_k,\ k=1,2,\ldots\}$ in Hilbert space $H$ is called a unconditional basis if there exist numbers $c,C > 0$ such that for any element $x=\sum \nolimits _{k=1}^{\infty } x_ke_k\in H$ the relation $$ c\sum _{k=1}^\infty |c_k|^2\|e_k\|^2\le \left \|x \right \|^2\le C\sum _{k=1}^\infty |c_k|^2\|e_k\|^2 $$ holds true. The article describes a method for constructing unconditional bases of reproducing kernels in such spaces. This problem goes back to two closely related classical problems: representation of functions by series of exponentials and interpolation by entire functions.
@article{VMJ_2020_22_3_a6,
     author = {K. P. Isaev and R. S. Yulmukhametov},
     title = {Unconditional bases in radial {Hilbert} spaces},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {85--99},
     year = {2020},
     volume = {22},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2020_22_3_a6/}
}
TY  - JOUR
AU  - K. P. Isaev
AU  - R. S. Yulmukhametov
TI  - Unconditional bases in radial Hilbert spaces
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2020
SP  - 85
EP  - 99
VL  - 22
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMJ_2020_22_3_a6/
LA  - ru
ID  - VMJ_2020_22_3_a6
ER  - 
%0 Journal Article
%A K. P. Isaev
%A R. S. Yulmukhametov
%T Unconditional bases in radial Hilbert spaces
%J Vladikavkazskij matematičeskij žurnal
%D 2020
%P 85-99
%V 22
%N 3
%U http://geodesic.mathdoc.fr/item/VMJ_2020_22_3_a6/
%G ru
%F VMJ_2020_22_3_a6
K. P. Isaev; R. S. Yulmukhametov. Unconditional bases in radial Hilbert spaces. Vladikavkazskij matematičeskij žurnal, Tome 22 (2020) no. 3, pp. 85-99. http://geodesic.mathdoc.fr/item/VMJ_2020_22_3_a6/

[1] Aronszajn N., “Theory of reproducing kernels”, Trans. Amer. Math. Soc., 68:3 (1950), 337–404 | DOI | MR | Zbl

[2] Hruščev S. V., Nikol'skii N. K., Pavlov B. S., “Unconditional bases of exponentials and of reproductional kernels”, Complex Analysis and Spectral Theory, Lecture Notes in Mathematics, 864, 1981, 214–335 | DOI | MR

[3] Leontev A. F., Exponential Series, Nauka, M., 1976, 536 pp. (in Russian) | MR

[4] Korobeinik Yu. F., “Representing Systems”, Russian Mathematical Surveys, 36:1 (1981), 75–137 | DOI | MR | Zbl

[5] Isaev K. P., “Representing Exponential Systems in Spaces of Analytical Functions”, Complex Analysis. Entire Functions and Their Applications, Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 161, VINITI, M., 2019, 3–64 (in Russian)

[6] Isaev K. P., Trounov K. V., Yulmukhamtov R. S., “Representing Systems of Exponentials in Projective Limits of Weighted Subspaces of $H(D)$”, Izvestiya: Mathematics, 83:2 (2019), 232–250 | DOI | DOI | MR | Zbl

[7] Russell D. L., “On exponential bases for the Sobolev spaces over an interval”, J. Math. Anal. Appl., 87:2 (1982), 528–550 | DOI | MR | Zbl

[8] Levin B. Ya., Lyubarskii Yu. I., “Interpolation by Means of Special Classes of Entire Functions and Related Expansions in Series of Exponentials”, Mathematics of the USSR-Izvestiya, 9:3 (1975), 621–662 | DOI | MR | MR | Zbl

[9] Isaev K. P., “Riesz Bases of Exponents in Bergman Spaces on Convex Polygons]”, Ufimskii Matematicheskii Zhurnal, 2:1 (2010), 71–86 (in Russian) | Zbl

[10] Lutsenko V. I., Unconditional bases of exponentials in Smirnov spaces, Dis. ... k.f.-m.n., Inst. Math. Comp. Centre UFRC RAS, Ufa, 1992 (in Russian) | Zbl

[11] Isaev K. P., Yulmukhamtov R. S., “The Absence of Unconditional Bases of Exponentials in Bergman Spaces on Non-Polygonal Domains”, Izvestiya: Mathematics, 71:6 (2007), 1145–1166 | DOI | DOI | MR | Zbl

[12] Bashmakov R. A., Makhota A. A., Trounov K. V., “On Absence Conditions of Unconditional Bases of Exponents”, Ufa Mathematical Journal, 7:2 (2015), 17–32 | DOI | MR

[13] Isaev K. P., “On unconditional exponential bases in weighted spaces on interval of real axis”, Lobachevskii Journal of Mathematics, 38:1 (2017), 48–61 | DOI | MR | Zbl

[14] Seip K., “Density theorems for sampling and interpolation on the Bargmann–Fock space. I”, J. Reine Angew. Math., 429 (1992), 91–106 | DOI | MR | Zbl

[15] Seip K., Wallsten R., “Density theorems for sampling and interpolation in the Bargmann–Fock space. II”, J. Reine Angew. Math., 429 (1992), 107–113 | DOI | MR | Zbl

[16] Borichev A., Dhues R., Kellay K., “Sampling and interpolation in the Bergman and Fock spaces”, J. Funct. Anal., 242:2 (2007), 563–606 | DOI | MR | Zbl

[17] Borichev A., Lyubarskii Yu., “Riesz bases of reproducing kernels in Fock type spaces”, J. Inst. Math. Jussieu, 9:3 (2010), 449–461 | DOI | MR | Zbl

[18] Baranov A., Belov Yu., Borichev A., “Fock type spaces with Riesz bases of reproducing kernels and de Branges spaces”, Stud. Math., 236:2 (2017), 127–142 | DOI | MR | Zbl

[19] Isaev K. P., Lutsenko A. V., Yulmukhamtov R. S., “Unconditional Bases in Weakly Weighted Spaces of Entire Functions”, St. Petersburg Mathematical Journal, 30:2 (2019), 253–265 | DOI | MR | MR | Zbl

[20] Nikolski N. K., Functions, and Systems: an Easy Reading, v. 1, Hardy, Hankel, and Toeplitz, Amer. Math. Soc., Providence, R.I., 2002 | MR

[21] Bari N. K., “Biorthogonal Systems and Bases in Hilbert Space”, Mathematics, v. 4, Uchenye Zapiski Moskovskogo Gosudarstvennogo Universiteta, 148, Moscow Univ. Press, M., 1951, 69–107 (in Russian)