@article{VMJ_2020_22_3_a4,
author = {R. A. Gaisin},
title = {Quasianalyticity criterion of {Salinas{\textendash}Korenblyum} type for convex domains},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {58--71},
year = {2020},
volume = {22},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2020_22_3_a4/}
}
R. A. Gaisin. Quasianalyticity criterion of Salinas–Korenblyum type for convex domains. Vladikavkazskij matematičeskij žurnal, Tome 22 (2020) no. 3, pp. 58-71. http://geodesic.mathdoc.fr/item/VMJ_2020_22_3_a4/
[1] Mandelbrojt S., Séries Adhérentes. Régularisation des Suites. Applications, Gauthier-Villars, Paris, 1952, 277 pp. | MR
[2] Men'shov D. E., Selected Works: Mathematics, Faktorial, M., 1997, 480 pp. (in Russian)
[3] Gaysin R. A., Quasianalyticity of Carleman Classes on Continua of the Complex Plane, Dissertation in Support of Candidature for a Physico-mathematical Degree, Ufa, 2019, 114 pp. (in Russian)
[4] Yulmukhametov R. S., “Quasianalytical Classes of Functions in Convex Domains”, Math. USSR-Sb., 58:2 (1987), 505–523 | DOI | MR | Zbl
[5] Yulmukhametov R. S., Approximation of Subharmonic Functions and Applications, Dissertation for a Doctor's of Physico-mathematical Degree, Ufa, 1986, 197 pp. (in Russian) | Zbl
[6] Trunov K. V., Yulmukhametov R. S., “Quasianalytic Carleman Classes on Bounded Domains”, St. Petersburg Mathematical Journal, 20:2 (2009), 289–317 | DOI | MR | Zbl
[7] Seneta E., Regularly Varying Functions, Springer-Verlag, Berlin–Heidelberg, 1976, 113 pp. | MR | Zbl
[8] Evgrafov M. A., Asymptotic Estimates and Entire Functions, Gordon and Breach Science Pub, Abingdon-on-Thames, 1962, 192 pp. | MR | MR
[9] Braychev G. G., Introduction in Theory of Convex and Entire Functions, Prometey, M., 2005, 232 pp. (in Russian)