Quasianalyticity criterion of Salinas–Korenblyum type for convex domains
Vladikavkazskij matematičeskij žurnal, Tome 22 (2020) no. 3, pp. 58-71 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The quasianalyticity problem of the class $C_{I}(M_n)$ for interval $I$ is known to be solved by the Denjoy-Carleman theorem. It follows from well-known Men'shov example that not only this theorem but the very statement of the quasianalyticity problem of the class $C_{K}(M_n)$ doesn't expand on the case of arbitrary continuum $K$ of the complex plain. The quasianalyticity problem was studied for Jordan domains and rectifiable arcs including quasismooth arcs by a number of authors. We discuss in this article theorems of Denjoy-Carleman type in the convex domains of the complex plane, more precisely, connection between R. S. Yulmukhametov criterion of quasianalyticity of the Carleman class $H(D,M_n)$ for arbitrary convex domain $D$ and R. Salinas criterion for the class $H(\Delta_{\alpha},M_n)$ with angle $\Delta_{\alpha}=\{z: |\arg z|\leq\frac{\pi}{2}\alpha,\ \ 0<\alpha\leq1\}$. The problem of quasianalyticity of the class $H(D,M_n)$ is to find necessary and sufficient conditions for sequence $M_n$ and point $z_0\in\partial D$ for quasianalyticity of the class $H(D,M_n)$ at this point. The answer to question of simultaneous quasianalyticity or nonquasianalyticity these Carleman classes at a point $z=0$ has been obtained in therms of special integral condition which characterizes the degree of proximity of the domain boundaries $D$ and the angle $\Delta_{\alpha}$ in the neighbourhood of origin. Geometric interpretation of this integral condition and explicit examples illustrating essentiality of this condition are given.
@article{VMJ_2020_22_3_a4,
     author = {R. A. Gaisin},
     title = {Quasianalyticity criterion of {Salinas{\textendash}Korenblyum} type for convex domains},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {58--71},
     year = {2020},
     volume = {22},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2020_22_3_a4/}
}
TY  - JOUR
AU  - R. A. Gaisin
TI  - Quasianalyticity criterion of Salinas–Korenblyum type for convex domains
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2020
SP  - 58
EP  - 71
VL  - 22
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMJ_2020_22_3_a4/
LA  - ru
ID  - VMJ_2020_22_3_a4
ER  - 
%0 Journal Article
%A R. A. Gaisin
%T Quasianalyticity criterion of Salinas–Korenblyum type for convex domains
%J Vladikavkazskij matematičeskij žurnal
%D 2020
%P 58-71
%V 22
%N 3
%U http://geodesic.mathdoc.fr/item/VMJ_2020_22_3_a4/
%G ru
%F VMJ_2020_22_3_a4
R. A. Gaisin. Quasianalyticity criterion of Salinas–Korenblyum type for convex domains. Vladikavkazskij matematičeskij žurnal, Tome 22 (2020) no. 3, pp. 58-71. http://geodesic.mathdoc.fr/item/VMJ_2020_22_3_a4/

[1] Mandelbrojt S., Séries Adhérentes. Régularisation des Suites. Applications, Gauthier-Villars, Paris, 1952, 277 pp. | MR

[2] Men'shov D. E., Selected Works: Mathematics, Faktorial, M., 1997, 480 pp. (in Russian)

[3] Gaysin R. A., Quasianalyticity of Carleman Classes on Continua of the Complex Plane, Dissertation in Support of Candidature for a Physico-mathematical Degree, Ufa, 2019, 114 pp. (in Russian)

[4] Yulmukhametov R. S., “Quasianalytical Classes of Functions in Convex Domains”, Math. USSR-Sb., 58:2 (1987), 505–523 | DOI | MR | Zbl

[5] Yulmukhametov R. S., Approximation of Subharmonic Functions and Applications, Dissertation for a Doctor's of Physico-mathematical Degree, Ufa, 1986, 197 pp. (in Russian) | Zbl

[6] Trunov K. V., Yulmukhametov R. S., “Quasianalytic Carleman Classes on Bounded Domains”, St. Petersburg Mathematical Journal, 20:2 (2009), 289–317 | DOI | MR | Zbl

[7] Seneta E., Regularly Varying Functions, Springer-Verlag, Berlin–Heidelberg, 1976, 113 pp. | MR | Zbl

[8] Evgrafov M. A., Asymptotic Estimates and Entire Functions, Gordon and Breach Science Pub, Abingdon-on-Thames, 1962, 192 pp. | MR | MR

[9] Braychev G. G., Introduction in Theory of Convex and Entire Functions, Prometey, M., 2005, 232 pp. (in Russian)