Ritt–Sugimura type theorems
Vladikavkazskij matematičeskij žurnal, Tome 22 (2020) no. 3, pp. 47-57 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

At the end of the nineteenth century, E. Borel introduced the concept of the order of an entire function, and then a corresponding formula was obtained for calculating this quantity in terms of the coefficients of the Taylor expansion of this function. Later, J. Ritt extended this notion to entire functions represented by Dirichlet series with positive exponents. He also obtained a similar formula for this characteristic ($R$-order), which clearly depends on the coefficients and exponents of the Dirichlet series. In the works of A. M. Gaisin, this result was completely carried over to the case of a halfplane and also a bounded convex domain. In the latter case, the author deals with Dirichlet series with complex exponents, exponential series. In this article the relationship between the growth of the Dirichlet series and the expansion coefficients in terms of Ritt order ($R$-order) is studied. Cases when the series converges uniformly in the entire plane or only in a halfplane are considered separately. In both cases the necessary and sufficient conditions for the exponents are obtained, the fulfillment of which the corresponding formulas are correct, allowing to calculate this value through the series coefficients. All previously known results of this type were only of a sufficient character. In the case of a plane, we have shown accuracy of S. Tanaka's estimates for the $R$-order.
@article{VMJ_2020_22_3_a3,
     author = {A. M. Gaisin and G. A. Gaisina},
     title = {Ritt{\textendash}Sugimura type theorems},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {47--57},
     year = {2020},
     volume = {22},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2020_22_3_a3/}
}
TY  - JOUR
AU  - A. M. Gaisin
AU  - G. A. Gaisina
TI  - Ritt–Sugimura type theorems
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2020
SP  - 47
EP  - 57
VL  - 22
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMJ_2020_22_3_a3/
LA  - ru
ID  - VMJ_2020_22_3_a3
ER  - 
%0 Journal Article
%A A. M. Gaisin
%A G. A. Gaisina
%T Ritt–Sugimura type theorems
%J Vladikavkazskij matematičeskij žurnal
%D 2020
%P 47-57
%V 22
%N 3
%U http://geodesic.mathdoc.fr/item/VMJ_2020_22_3_a3/
%G ru
%F VMJ_2020_22_3_a3
A. M. Gaisin; G. A. Gaisina. Ritt–Sugimura type theorems. Vladikavkazskij matematičeskij žurnal, Tome 22 (2020) no. 3, pp. 47-57. http://geodesic.mathdoc.fr/item/VMJ_2020_22_3_a3/

[1] Bohr H., Collected Mathematical Works, Copenhagen, 1952, 992 pp. | Zbl

[2] Valiron G., “Sur l'abscisse de convergence des séries de Dirichlet”, Bull. Soc. Math. France, 52 (1924), 166–174 | DOI | MR | Zbl

[3] Valiron G., “Entire functions and Borel's directions”, Proc. Natl. Acad. Sci. USA, 20 (1934), 211–215 | DOI

[4] Kuniyeda M., “Uniform convergence — abscissa of general Dirichlet series”, T{ô}hoku Math. J., 9 (1916), 7–27 | Zbl

[5] Ritt J., “On certain points in the theory of Dirichlet series”, Amer. J. Math., 50:1 (1928), 73–86 | DOI | MR | Zbl

[6] Leont'ev A. F., Exponential Series, Nauka, M., 1976, 536 pp. (in Russian) | MR

[7] Gaisin A. M., “A Bound for the Growth in a Half-Strip of a Function Represented by a Dirichlet Series”, Mathematics of the USSR-Sbornik, 45:3 (1983), 411–422 | DOI | MR

[8] Gaisin A. M., “Behavior of the Sum of a Series of Exponentials Near the Boundary of the Domain of Regularity”, Mathematical Notes of the Academy of Sciences of the USSR, 48:3 (1990), 904–910 | DOI | MR | Zbl | Zbl

[9] Leont'ev A. F., Entire Functions. Exponential Series, Nauka, M., 1983, 176 pp. (in Russian) | MR

[10] Mandelbrojt S., Séries Adhérentes. Régularisation des Suites. Applications, Gauthier-Villars, Paris, 1952, xiv+277 pp. | MR | MR

[11] Sugimura K., “Übertragung einiger Sätze aus der Theorie der ganzen Funktionen auf Dirichletsche Reihen”, Math. Z., 29 (1929), 264–277 | DOI | MR

[12] Tanaka C., “Note on Dirichlet series, V. On the integral functions defined by Dirichlet series, I”, T{ô}hoku Math. J., 2:3 (1953), 67–78 | DOI | MR | Zbl

[13] Korobeynik Yu. F., Exponential Series with Real Exponents, SFU, Rostov-on-Don, 2009, 84 pp. (in Russian)

[14] Korobeynik Yu. F., “On Some Problems in the Theory of the Riemann's Zeta-Function”, Ufa Mathematical Journal, 7:4 (2015), 88–93 | DOI | MR | Zbl